Skip to main content
Log in

Detection of CO2 and O2 by iron loaded LTL zeolite films

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Detection of oxygen and carbon dioxide is important in the field of chemical and biosensors for atmosphere and biosystem monitoring and fermentation processes. The present study reports on the preparation of zeolite films doped with iron nanoparticles for detection of CO2 and O2 in gas phase. Pure nanosized LTL type zeolite with monomodal particle size distribution loaded with iron (Fe-LTL) was prepared under hydrothermal condition from colloidal precursor suspensions. The zeolite was loaded with iron to different levels by ion exchange. The Fe-LTL suspensions were used for preparation of thin films on silicon wafers via spin coating method. The reduction of the iron in the zeolite films was carried out under H2 flow (50% H2 in Ar) at 300 °C. The presence of iron nanoparticles is proved by in situ ultra-violet-visible spectroscopy. The properties of the films including surface roughness, thickness, porosity, and mechanical stability were studied. In addition, the loading and distribution of iron in the zeolite films were investigated. The Fe-LTL zeolite films were used to detect O2 and CO2 in a concentration dependent mode, followed by IR spectroscopy. The changes in the IR bands at 855 and 642 cm–1 (Fe‒O‒H and Fe‒O bending vibrations) and at 2363 and 2333 cm–1 (CO2 asymmetric stretching) corresponding to the presence of O2 and CO2, respectively, were evaluated. The response to O2 and CO2 was instant, which was attributed to great accessibility of the iron in the nanosized zeolite crystals. The saturation of the Fe-LTL films with CO2 and O2 at each concentration was reached within less than a minute. The Fe-LTL films detected both oxygen and carbon dioxide in contrast, to the pure LTL zeolite film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Diamond D. Principles of chemical and biological sensors. Michigan: Wiley, 1998, 220–290

    Google Scholar 

  2. Bein T. Synthesis and applications of molecular sieve layers and membranes. Chemistry of Materials, 1996, 8(8): 1636–1653

    Article  CAS  Google Scholar 

  3. Mintova S, Mo S, Bein T. Humidity sensing with ultrathin LTA-type molecular sieve films grown on piezoelectric devices. Chemistry of Materials, 2001, 13(3): 901–905

    Article  CAS  Google Scholar 

  4. Yang P, Lau C, Liang J Y, Lu J Z, Liu X. Zeolite-based cataluminescence sensor for the selective detection of acetaldehyde. Luminescence, 2007, 22(5): 473–479

    Article  CAS  Google Scholar 

  5. Mintova S, Jaber M, Valtchev V. Nanosized microporous crystals: Emerging applications. Chemical Society Reviews, 2015, 44(20): 7207–7233

    Article  CAS  Google Scholar 

  6. Bein T, Mintova S. Zeolites and ordered mesoporous materials: Progress and prospects. Studies in Surface Science and Catalysis, 2005, 157: 263–288

    Article  CAS  Google Scholar 

  7. Mintova S, Bein T. Microporous films prepared by spin-coating stable colloidal suspensions of zeolites. Advanced Materials, 2001, 13(24): 1880–1883

    Article  CAS  Google Scholar 

  8. Leite E, Babeva T, Ng E P, Toal V, Mintova S, Naydenova I. Optical properties of photopolymer layers doped with aluminophosphate nanocrystals. Journal of Physical Chemistry C, 2010, 114(39): 16767–16775

    Article  CAS  Google Scholar 

  9. Valtchev V, Tosheva L. Porous nanosized particles: Preparation, properties, and applications. Chemical Reviews, 2013, 113(8): 6734–6760

    Article  CAS  Google Scholar 

  10. Yasuda K E, Visser J E, Bein T. Molecular sieve catalysts on microcalorimeter chips for selective chemical sensing. Microporous and Mesoporous Materials, 2009, 119(1-3): 356–359

    Article  CAS  Google Scholar 

  11. Xu X, Wang J, Long Y. Zeolite-based materials for gas sensors. Sensors (Basel), 2006, 6(12): 1751–1764

    Article  CAS  Google Scholar 

  12. Lakiss L, Kecht J, De Waele V, Mintova S. Copper-containing nanoporous films. Superlattices and Microstructures, 2008, 44(4-5): 617–625

    Article  CAS  Google Scholar 

  13. Thomas S, Bazin P, Lakiss L, De Waele V, Mintova S. In situ infrared molecular detection using palladium-containing zeolite films. Langmuir, 2011, 27(23): 14689–14695

    Article  CAS  Google Scholar 

  14. Huang H, Zhou J, Chen S, Zeng L, Huang Y. A highly sensitive QCM sensor coated with Ag+-ZSM-5 film for medical diagnosis. Sensors and Actuators. B, Chemical, 2004, 101(3): 316–321

    Article  CAS  Google Scholar 

  15. Dubbe A. The effect of platinum clusters in the zeolite micropores of a zeolite-based potentiometric hydrocarbon gas sensor. Sensors and Actuators. B, Chemical, 2009, 137(1): 205–208

    Article  Google Scholar 

  16. Wales D J, Grand J, Ting V P, Burke R D, Edler K J, Bowen C R, Mintova S, Burrows A D. Gas sensing using porous materials for automotive applications. Chemical Society Reviews, 2015, 44(13): 4290–4321

    Article  CAS  Google Scholar 

  17. Fine G F, Cavanagh L M, Afonja A, Binions R. Metal oxide semiconductor gas sensors in environmental monitoring. Sensors (Basel), 2010, 10(6): 5469–5502

    Article  CAS  Google Scholar 

  18. Mohan N, Cindrella L. Mater. Direct synthesis of Fe-ZSM-5 zeolite and its prospects as efficient electrode material in methanol fuel cell. Materials Science in Semiconductor Processing, 2015, 40: 361–368

    Article  CAS  Google Scholar 

  19. Yue Y, Liu H, Yuan P, Yu C, Bao X. One-pot synthesis of hierarchical FeZSM-5 zeolites from natural aluminosilicates for selective catalytic reduction of NO by NH3. Scientific Reports, 2015, 5(9270): 1–10

    Google Scholar 

  20. Luo L, Dai C, Zhang A, Wang J, Liu M, Song C, Guo X. Facile synthesis of zeolite-encapsulated iron oxide nanoparticles as superior catalysts for phenol oxidation. RSC Advances, 2015, 5(37): 29509–29512

    Article  CAS  Google Scholar 

  21. Bouazizi N, Ouargli R, Nousir S, Slama R B, Azzouz A. Properties of SBA-15 modified by iron nanoparticles as potential hydrogen adsorbents and sensors. Journal of Physics and Chemistry of Solids, 2015, 77: 172–177

    Article  CAS  Google Scholar 

  22. Georgieva V, Anfray C, Retoux R, Valtchev V, Valable S, Mintova S. Iron loaded EMT nanosized zeolite with high affinity towards CO2 and NO. Microporous and Mesoporous Materials, 2016, 232: 256–263

    Article  CAS  Google Scholar 

  23. Suri K, Annapoorni S, Sarkar A K, Tandon R P. Gas and humidity sensors based on iron oxide-polypyrrole nanocomposites. Sensors and Actuators. B, Chemical, 2002, 81(2-3): 277–282

    Article  CAS  Google Scholar 

  24. Mcdonagh C M, Shields M, Mcevoy K, Maccraith B D, Gouin J F. Optical sol-gel-based dissolved oxygen sensor: Progress towards a commercial instrument. Journal of Sol-Gel Science and Technology, 1998, 13(1-3): 207–211

    Article  CAS  Google Scholar 

  25. Ishiji T, Chipman D W, Takahashi T, Takahashi K. Amperometric sensor for monitoring of dissolved carbon dioxide in seawater. Sensors and Actuators. B, Chemical, 2001, 76(1-3): 265–269

    Article  CAS  Google Scholar 

  26. Guéguen C, Tortell P D. High-resolution measurement of southern ocean CO2 and O2/Ar by membrane inlet mass spectrometry. Marine Chemistry, 2008, 108(3-4): 184–194

    Article  Google Scholar 

  27. Higgins C, Wencel D, Burke C S, MacCraith B D, McDonagh C. Novel hybrid optical sensor materials for in-breath O(2) analysis. Analyst (London), 2008, 133(2): 241–247

    Article  CAS  Google Scholar 

  28. Hoelper B M, Alessandri B, Heimann A, Behr R, Kempski O. Brain oxygen monitoring: In-vitro accuracy, long-term drift and responsetime of Licox- and Neurotrend sensors. Acta Neurochirurgica, 2005, 147(7): 767–774

    Article  CAS  Google Scholar 

  29. Baldini F, Falai A, De Gaudio R, Landi D, Lueger A, Mencaglia A, Scherr D, Trettnak W. Continuous monitoring of gastric carbon dioxide with optical fibres. Sensors and Actuators. B, Chemical, 2003, 90(1-3): 132–138

    Article  CAS  Google Scholar 

  30. Čajlaković M, Bizzarri A, Ribitsch V. Luminescence lifetime-based carbon dioxide optical sensor for clinical applications. Analytica Chimica Acta, 2006, 573–574: 57–64

    Google Scholar 

  31. Wolfbeis O S, Klimant I, Werner T, Huber C, Kosch U, Krause C, Neurauter G, Dürkop A. Set of luminescence decay time based chemical sensors for clinical applications. Sensors and Actuators. B, Chemical, 1998, 51(1-3): 17–24

    Article  CAS  Google Scholar 

  32. Mills A. Oxygen indicators and intelligent inks for packaging food. Chemical Society Reviews, 2005, 34(12): 1003–1011

    Article  CAS  Google Scholar 

  33. Chaix E, Guillaume C, Guillard V. Oxygen and carbon dioxide solubility and diffusivity in solid food matrices: A review of past and current knowledge. Comprehensive Reviews in Food Science and Food Safety, 2014, 13(3): 261–286

    Article  CAS  Google Scholar 

  34. Ge X, Hanson M, Shen H, Kostov Y, Brorson K, Frey D D, Moreira A R, Rao G. Validation of an optical sensor-based high-throughput bioreactor system for mammalian cell culture. Journal of Biotechnology, 2006, 122(3): 293–306

    Article  CAS  Google Scholar 

  35. Ge X, Kostov Y, Rao G. Low-cost noninvasive optical CO2 sensing system for fermentation and cell culture. Biotechnology and Bioengineering, 2005, 89(3): 329–334

    Article  CAS  Google Scholar 

  36. Mulrooney J, Clifford J, Fitzpatrick C, Lewis E. Detection of carbon dioxide emissions from a diesel engine using a mid-infrared optical fibre based sensor. Sensors and Actuators. A, Physical, 2007, 136(1): 104–110

    Article  CAS  Google Scholar 

  37. Litzelman S J, Rothschild A, Tuller H L. The electrical properties and stability of SrTi0.65Fe0.35O3-δ thin films for automotive oxygen sensor applications. Sensors and Actuators. B, Chemical, 2005, 108(1-2): 231–237

    Article  CAS  Google Scholar 

  38. Souici A, Wong K L, De Waele V, Marignier J L, Metzger T H, Keghouche N, Mintova S, Mostafavi M. Capturing the formation of sub-nanometer sized CdS clusters in LTL zeolite. Journal of Physical Chemistry C, 2014, 118(12): 6324–6334

    Article  CAS  Google Scholar 

  39. Hölzl M, Mintova S, Bein T. Colloidal LTL zeolite synthesized under microwave irradiation. Studies in Surface Science and Catalysis, 2005, 158(5): 11–18

    Article  Google Scholar 

  40. Lakiss L, Yordanov I, Majano G, Metzger T, Mintova S. Effect of stabilizing binder and dispersion media on spin-on zeolite thin films. Thin Solid Films, 2010, 518(8): 2241–2246

    Article  CAS  Google Scholar 

  41. Lowell S. Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density. Netherlands: Springer, 2004, 58–81

    Google Scholar 

  42. Sing K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 1985, 57(4): 603–619

    Article  CAS  Google Scholar 

  43. Das D, Ravichandran G, Chakrabarty D K, Piramanayagam S N, Shringi S N. Selective synthesis of light alkenes from carbon monoxide and hydrogen on silicalite supported iron-manganese catalysts. Applied Catalysis A, General, 1993, 107(1): 73–81

    Article  CAS  Google Scholar 

  44. Guo L, Huang Q, Li X, Yang S. Iron nanoparticles: Synthesis and applications in surface enhanced Raman scattering and electrocatalysis. Physical Chemistry Chemical Physics, 2001, 3(9): 1661–1665

    Article  CAS  Google Scholar 

  45. Bordiga S, Buzzoni R, Geobaldo F, Lamberti C, Giamello E, Zecchina A, Leofanti G, Petrini G, Tozzola G, Vlaic G. Structure and reactivity of framework and extraframework iron in Fe-silicalite as investigated by spectroscopic and physicochemical methods. Journal of Catalysis, 1996, 158(2): 486–501

    Article  CAS  Google Scholar 

  46. Pérez-Ramírez J, Groen J C, Brückner A, Kumar M S, Bentrup U, Debbagh M N, Villaescusa L A. Evolution of isomorphously substituted iron zeolites during activation: Comparison of Fe-beta and Fe-ZSM-5. Journal of Catalysis, 2005, 232(2): 318–334

    Article  Google Scholar 

  47. Mintova S, Bein T. Microporous films prepared by spin-coating stable colloidal suspensions of zeolites. Advanced Materials, 2001, 13(24): 1880–1883

    Article  CAS  Google Scholar 

  48. Mintova S, Valtchev V, Konstantinov L. Adhesivity of molecular sieve films on metal substrates. Zeolites, 1996, 17(5-6): 462–465

    Article  CAS  Google Scholar 

  49. Andrews L, Chertihin G V, Citra A, Neurock M. Reactions of laserablated iron atoms with N2O, NO, and O2 in condensing nitrogen. Infrared spectra and density functional calculations of ternary iron nitride oxide molecules. Journal of Physical Chemistry, 1996, 100(27): 11235–11241

    CAS  Google Scholar 

  50. Reiff W M, Baker W A, Erickson N E. Binuclear, oxygen-bridged complexes of iron(III). New iron (III)-2,2′,2"-terpyridine complexes. Journal of the American Chemical Society, 1968, 90(18): 4794–4800

    Article  CAS  Google Scholar 

  51. Dalla Betta R A, Garten R L, Boudart M. Infrared examination of the reversible oxidation of ferrous ions in Y zeolite. Journal of Catalysis, 1976, 41(1): 40–45

    Article  Google Scholar 

Download references

Acknowledgements

The financial support provided by TARGED ANR and Normandy C2–MTM Project is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana Mintova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgieva, V., Retoux, R., Ruaux, V. et al. Detection of CO2 and O2 by iron loaded LTL zeolite films. Front. Chem. Sci. Eng. 12, 94–102 (2018). https://doi.org/10.1007/s11705-017-1692-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1692-5

Keywords

Navigation