Advertisement

Tetrazole tethered polymers for alkaline anion exchange membranes

  • Erigene Bakangura
  • Yubin He
  • Xiaolin Ge
  • Yuan Zhu
  • Liang Wu
  • Jin Ran
  • Congliang Cheng
  • Kamana Emmanuel
  • Zhengjin Yang
  • Tongwen Xu
Communication
  • 54 Downloads

Abstract

Poly(2,6-dimethyl-1,4-phenylene oxide) was tethered with a 1,5-disubstituted tetrazole through a quaternary ammonium linkage. The formation of a tetrazole-ion network in the resulting polymers was found to promote the hydroxide ion transport through the Grotthus-type mechanism.

Keywords

anion exchange membrane fuel cell phase separation tetrazole 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This project has been supported by the National Natural Science Foundation of China (Grant No. 91534203) and K. C. Wong Education Foundation (2016-11). Erigene Bakangura is grateful to CASTWAS President’s fellowship for PhD programs.

Supplementary material

11705_2017_1690_MOESM1_ESM.pdf (2 mb)
Tetrazole tethered polymers for alkaline anion exchange membranes

References

  1. 1.
    Borup R, Meyers J, Pivovar B, Kim Y S, Mukundan R, Garland N, Myers D, Wilson M, Garzon F, Wood D, et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chemical Reviews, 2007, 107(10): 3904–3951CrossRefPubMedGoogle Scholar
  2. 2.
    McLean G F, Niet T, Prince-Richard S, Djilali N. An assessment of alkaline fuel cell technology. International Journal of Hydrogen Energy, 2002, 27(5): 507–526CrossRefGoogle Scholar
  3. 3.
    Gair S, Cruden A, McDonald J, Hegarty T, Chesshire M. Fuel cells for power generation and waste treatment. Journal of Power Sources, 2006, 154(2): 472–478CrossRefGoogle Scholar
  4. 4.
    Varcoe J R, Slade R C T. Prospects for alkaline anion-exchange membranes in low temperature fuel cells. Fuel Cells (Weinheim), 2005, 5(2): 187–200CrossRefGoogle Scholar
  5. 5.
    Varcoe J R, Atanassov P, Dekel D R, Herring A M, Hickner M A, Kohl P A, Kucernak A R, MustainWE, Nijmeijer K, Scott K, Xu T, et al. Anion-exchange membranes in electrochemical energy systems. Energy & Environmental Science, 2014, 7(10): 3135–3191CrossRefGoogle Scholar
  6. 6.
    Merle G, Wessling M, Nijmeijer K. Anion exchange membranes for alkaline fuel cells: A review. Journal of Membrane Science, 2011, 377(1-2): 1–35CrossRefGoogle Scholar
  7. 7.
    Pan J, Chen C, Li Y, Wang L, Tan L, Li G, Tang X, Xiao L, Lu J, Zhuang L. Constructing ionic highway in alkaline polymer electrolytes. Energy & Environmental Science, 2014, 7(1): 354–360CrossRefGoogle Scholar
  8. 8.
    Li N, Yan T, Li Z, Thurn-Albrecht T, Binder W H. Comb-shaped polymers to enhance hydroxide transport in anion exchange membranes. Energy & Environmental Science, 2012, 5(7): 7888–7892CrossRefGoogle Scholar
  9. 9.
    Li N, Leng Y, Hickner M A, Wang C Y. Highly stable, anion conductive, comb-shaped copolymers for alkaline fuel cells. Journal of the American Chemical Society, 2013, 135(27): 10124–10133CrossRefPubMedGoogle Scholar
  10. 10.
    Li Q, Liu L, Miao Q, Jin B, Bai R. A novel poly(2,6-dimethyl-1,4-phenylene oxide) with trifunctional ammonium moieties for alkaline anion exchange membranes. Chemical Communications, 2014, 50 (21): 2791–2793CrossRefPubMedGoogle Scholar
  11. 11.
    Ran J, Wu L, Wei B, Chen Y, Xu T. Simultaneous enhancements of conductivity and stability for anion exchange membranes (AEMs) through precise structure design. Scientific Reports, 2014, 4(1): 6486CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ran J, Wu L, Xu T. Enhancement of hydroxide conduction by selfassembly in anion conductive comb-shaped copolymers. Polymer Chemistry, 2013, 4(17): 4612–4620CrossRefGoogle Scholar
  13. 13.
    Yang Z, Guo R, Malpass-Evans R, Carta M, McKeown N B, Guiver M D, Wu L, Xu T. Highly conductive anion-exchange membranes from microporous Troger’s base polymers. Angewandte Chemie International Edition in English, 2016, 55(38): 11499–11502CrossRefGoogle Scholar
  14. 14.
    Hickner M A, Herring A M, Coughlin E B. Anion exchange membranes: Current status and moving forward. Journal of Polymer Science. Part B, Polymer Physics, 2013, 51(24): 1727–1735CrossRefGoogle Scholar
  15. 15.
    He Y, Pan J, Wu L, Zhu Y, Ge X, Ran J, Yang Z, Xu T. A novel methodology to synthesize highly conductive anion exchange membranes. Scientific Reports, 2015, 5(1): 13417CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Si J, Lu S, Xu X, Peng S, Xiu R, Xiang Y. A gemini quaternary ammonium poly(ether ether ketone) anion-exchange membrane for alkaline fuel cell: Design, synthesis, and properties. ChemSusChem, 2014, 7(12): 3389–3395CrossRefPubMedGoogle Scholar
  17. 17.
    Pan J, Zhu L, Han J, Hickner M A. Mechanically tough and chemically stable anion exchange membranes from rigid-flexible semi-interpenetrating networks. Chemistry of Materials, 2015, 27 (19): 6689–6698CrossRefGoogle Scholar
  18. 18.
    Ran J, Wu L, Ge Q, Chen Y, Xu T. High performance anion exchange membranes obtained through graft architecture and rational cross-linking. Journal of Membrane Science, 2014, 470: 229–236CrossRefGoogle Scholar
  19. 19.
    Wu L, Pan Q, Varcoe J R, Zhou D, Ran J, Yang Z, Xu T. Thermal crosslinking of an alkaline anion exchange membrane bearing unsaturated side chains. Journal of Membrane Science, 2015, 490: 1–8CrossRefGoogle Scholar
  20. 20.
    Li N, Wang L, Hickner M. Cross-linked comb-shaped anion exchange membranes with high base stability. Chemical Communications, 2014, 50(31): 4092–4095CrossRefPubMedGoogle Scholar
  21. 21.
    Zhang M, Liu J, Wang Y, An L, Guiver M D, Li N. Highly stable anion exchange membranes based on quaternized polypropylene. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(23): 12284–12296CrossRefGoogle Scholar
  22. 22.
    Yang Z, Zhou J,Wang S, Hou J,Wu L, Xu T. A strategy to construct alkali-stable anion exchange membranes bearing ammonium groups via flexible spacers. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2015, 3(29): 15015–15019CrossRefGoogle Scholar
  23. 23.
    Han J, Peng H, Pan J,Wei L, Li G, Chen C, Xiao L, Lu J, Zhuang L. Highly stable alkaline polymer electrolyte based on a poly(ether ether ketone) backbone. ACS Applied Materials & Interfaces, 2013, 5(24): 13405–13411CrossRefGoogle Scholar
  24. 24.
    Gu S, Skovgard J, Yan Y S. Engineering the Van der Waals interaction in cross-linking-free hydroxide exchange membranes for low swelling and high conductivity. ChemSusChem, 2012, 5(5): 843–848CrossRefPubMedGoogle Scholar
  25. 25.
    Li N, Guiver M D, Binder W H. Towards high conductivity in anion-exchange membranes for alkaline fuel cells. ChemSusChem, 2013, 6(8): 1376–1383CrossRefPubMedGoogle Scholar
  26. 26.
    Song M K, Li H, Li J, Zhao D, Wang J, Liu M. Tetrazole-based, anhydrous proton exchange membranes for fuel cells. Advanced Materials, 2014, 26(8): 1277–1282CrossRefPubMedGoogle Scholar
  27. 27.
    Gao H, Shreeve J M. Azole-based energetic salts. Chemical Reviews, 2011, 111(11): 7377–7436CrossRefPubMedGoogle Scholar
  28. 28.
    Karaghiosoff K, Klapötke T M, Mayer P, Sabaté C M, Penger A, Welch J M. Salts of methylated 5-aminotetrazoles with energetic anions. Inorganic Chemistry, 2008, 47(3): 1007–1019CrossRefPubMedGoogle Scholar
  29. 29.
    Klapötke T M, Miró Sabaté C, Penger A, Rusan M, Welch J M. Energetic salts of low-symmetry methylated 5-aminotetrazoles. European Journal of Inorganic Chemistry, 2009, 2009(7): 880–896CrossRefGoogle Scholar
  30. 30.
    Lu D, Winter C H. Complexes of the [K(18-Crown-6)]+ fragment with bis(tetrazolyl)borate ligands: Unexpected boron-nitrogen bond isomerism and associated enforcement of k3-N,N′,H-ligand chelation. Inorganic Chemistry, 2010, 49(13): 5795–5797CrossRefPubMedGoogle Scholar
  31. 31.
    Allen F H, Groom C R, Liebeschuetz J W, Bardwell D A, Olsson T S G, Wood P A. The hydrogen bond environments of 1H-tetrazole and tetrazolate rings: The structural basis for tetrazole-carboxylic acid bioisosterism. Journal of Chemical Information and Modeling, 2012, 52(3): 857–866CrossRefPubMedGoogle Scholar
  32. 32.
    Tsarevsky N V, Bernaerts K V, Dufour B, Du Prez F E, Matyjaszewski K. Well-defined (Co)polymers with 5-vinyltetrazole units via combination of atom transfer radical (Co)polymerization of acrylonitrile and “click chemistry”-type postpolymerization modification. Macromolecules, 2004, 37(25): 9308–9313CrossRefGoogle Scholar
  33. 33.
    Tsai T H, Maes A M, Vandiver M A, Versek C, Seifert S, Tuominen M, Liberatore M W, Herring A M, Coughlin E B. Synthesis and structure-conductivity relationship of polystyrene-block-poly(vinyl benzyl trimethylammonium) for alkaline anion exchange membrane fuel cells. Journal of Polymer Science. Part B, Polymer Physics, 2013, 51(24): 1751–1760CrossRefGoogle Scholar
  34. 34.
    Xing B, Savadogo O. Hydrogen/oxygen polymer electrolyte membrane fuel cells (PEMFCs) based on alkaline-doped polybenzimidazole (PBI). Electrochemistry Communications, 2000, 2 (10): 697–702CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Erigene Bakangura
    • 1
  • Yubin He
    • 1
  • Xiaolin Ge
    • 1
  • Yuan Zhu
    • 1
  • Liang Wu
    • 1
  • Jin Ran
    • 1
  • Congliang Cheng
    • 1
  • Kamana Emmanuel
    • 1
  • Zhengjin Yang
    • 1
  • Tongwen Xu
    • 1
  1. 1.CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, School of Chemistry and Material ScienceUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations