Study of the robustness of a low-temperature dual-pressure process for removal of CO2 from natural gas

  • Stefania Moioli
  • Laura A. Pellegrini
  • Paolo Vergani
  • Fabio Brignoli
Research Article


The growing use of energy by most of world population and the consequent increasing demand for energy are making unexploited low quality gas reserves interesting from an industrial point of view. To meet the required specifications for a natural gas grid, some compounds need to be removed from the sour stream. Because of the high content of undesired compounds (i.e., CO2) in the stream to be treated, traditional purification processes may be too energy intensive and the overall system may result unprofitable, therefore new technologies are under study. In this work, a new process for the purification of natural gas based on a low temperature distillation has been studied, focusing on the dynamics of the system. The robustness of the process has been studied by dynamic simulation of an industrial-scale plant, with particular regard to the performances when operating conditions are changed. The results show that the process can obtain the methane product with a high purity and avoid the solidification of carbon dioxide.


CO2 capture innovative process cryogenic distillation dynamic simulation solid-liquid-vapor equilibrium 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burgers W F J, Northrop P S, Kheshgi H S, Valencia J A. Worldwide development potential for sour gas. Energy Procedia, 2011, 4: 2178–2184CrossRefGoogle Scholar
  2. 2.
    Ravanchi M, Sahebdelfar S, Zangeneh F. Carbon dioxide sequestration in petrochemical industries with the aim of reduction in greenhouse gas emissions. Frontiers of Chemical Science and Engineering, 2011, 5(2): 173–178CrossRefGoogle Scholar
  3. 3.
    Rufford T E, Smart S, Watson G C Y, Graham B F, Boxall J, Diniz da Costa J C, May E F. The removal of CO2 and N2 from natural gas: A review of conventional and emerging process technologies. Journal of Petroleum Science Engineering, 2012, 94-95: 123–154CrossRefGoogle Scholar
  4. 4.
    Mumford K A, Wu Y, Smith K H, Stevens G W. Review of solvent based carbon-dioxide capture technologies. Frontiers of Chemical Science and Engineering, 2015, 9(2): 125–141CrossRefGoogle Scholar
  5. 5.
    Wang M, Yang D, Wang Z, Wang J, Wang S. Effects of pressure and temperature on fixed-site carrier membrane for CO2 separation from natural gas. Frontiers of Chemical Engineering in China, 2010, 4(2): 127–132CrossRefGoogle Scholar
  6. 6.
    Xiao Y, Low B T, Hosseini S S, Chung T S, Paul D R. The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas—A review. Progress in Polymer Science, 2009, 34(6): 561–580CrossRefGoogle Scholar
  7. 7.
    Yong W F, Li F Y, Chung T S, Tong Y W. Highly permeable chemically modified PIM-1/Matrimid membranes for green hydrogen purification. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(44): 13914–13925CrossRefGoogle Scholar
  8. 8.
    Baker R W, Lokhandwala K. Natural gas processing with membranes: An overview. Industrial & Engineering Chemistry Research, 2008, 47(7): 2109–2121CrossRefGoogle Scholar
  9. 9.
    Wu Y, Wang Y, Zeng Q, Gong X, Yu Z. Experimental study on capturing CO2 greenhouse gas by mixture of ammonia and soil. Frontiers of Chemical Engineering in China, 2009, 3(4): 468–473CrossRefGoogle Scholar
  10. 10.
    Olajire A A. CO2 capture by aqueous ammonia process in the clean development mechanism for Nigerian oil industry. Frontiers of Chemical Science and Engineering, 2013, 7(3): 366–380CrossRefGoogle Scholar
  11. 11.
    Kohl A L, Nielsen R. Gas Purification. 5th ed. Houston: Gulf Publishing Company, Book Division, 1997Google Scholar
  12. 12.
    GPSA. Engineering Data Book. 12th Edition. Tulsa: Gas Processors Suppliers Association, 2004Google Scholar
  13. 13.
    Moioli S, Pellegrini L A. Modeling the methyldiethanolaminepiperazine scrubbing system for CO2 removal: Thermodynamic analysis. Frontiers of Chemical Science and Engineering, 2016, 10 (1): 162–175CrossRefGoogle Scholar
  14. 14.
    Moioli S, Pellegrini L A. Improved rate-based modeling of the process of CO2 capture with PZ solution. Chemical Engineering Research & Design, 2015, 93: 611–620CrossRefGoogle Scholar
  15. 15.
    Moioli S. The rate-based modelling of CO2 removal from the flue gases of power plants. WIT Transactions on Ecology and the Environment, 2014, 186: 635–646CrossRefGoogle Scholar
  16. 16.
    Moioli S, Pellegrini L A. Physical properties of PZ solution used as a solvent for CO2 removal. Chemical Engineering Research & Design, 2015, 93: 720–726CrossRefGoogle Scholar
  17. 17.
    Moioli S, Nagy T, Langé S, Pellegrini L A, Mizsey P. Simulation model evaluation of CO2 capture by aqueous MEA scrubbing for heat requirement analyses. Energy Procedia, 2017, 114: 1558–1566CrossRefGoogle Scholar
  18. 18.
    Nagy T, Moioli S, Langé S, Pellegrini L A, Mizsey P. Improvement of post-combustion carbon capture process in retrofit case. Energy Procedia, 2017, 114: 1567–1575CrossRefGoogle Scholar
  19. 19.
    Langé S. Purification of natural gas by means of a new low temperature distillation process. Dissertation for the Doctoral Degree. Milano: Politecnico di Milano, 2015, 1–299Google Scholar
  20. 20.
    Olajire A A. CO2 capture and separation technologies for end-ofpipe applications—A review. Energy, 2010, 35(6): 2610–2628CrossRefGoogle Scholar
  21. 21.
    Langé S, Moioli S, Pellegrini L A. Vapor-liquid equilibrium and enthalpy of absorption of the CO2-MEA-H2O system. Chemical Engineering Transactions, 2015, 43: 1975–1980Google Scholar
  22. 22.
    Hochgesand G. Rectisol and purisol. Industrial & Engineering Chemistry, 1970, 62(7): 37–43CrossRefGoogle Scholar
  23. 23.
    Holmes A S, Ryan J M. Cryogenic distillative separation of acid gases from methane. US Patent, 4318723, 1982-03-09Google Scholar
  24. 24.
    Holmes A S, Ryan J M. Distillative separation of carbon dioxide from light hydrocarbons. US Patent, 4350511, 1982-09-21Google Scholar
  25. 25.
    Holmes A S, Price B C, Ryan J M, Styring R E. Pilot tests prove out cryogenic acid-gas/hydrocarbon separation processes. Oil & Gas Journal, 1983, 27: 85–91Google Scholar
  26. 26.
    Haut R C, Denton R D, Thomas E R. Development and application of the controlled-freeze-zone process. SPE Production Engineering, 1989, 4(3): 265–271CrossRefGoogle Scholar
  27. 27.
    Michael E, Parker P E, Northrop S, Valencia J A, Foglesong R E, Duncan W T. CO2 management at ExxonMobil’s LaBarge field, Wyoming, USA. Energy Procedia, 2011, 4: 5455–5470CrossRefGoogle Scholar
  28. 28.
    Northrop P S, Valencia J A. The CFZTM process: A cryogenic method for handling high-CO2 and H2S gas reserves and facilitating geosequestration of CO2 and acid gases. Energy Procedia, 2009, 1 (1): 171–177CrossRefGoogle Scholar
  29. 29.
    Valencia J A, Denton R D. Method and apparatus for separating carbon dioxide and other acid gases from methane by the use of distillation and a controlled freeze zone. US Patent, 4533372, 1985-06-08Google Scholar
  30. 30.
    Valencia J A, Victory D J. Method and apparatus for cryogenic separation of carbon dioxide and other acid gases from methane. US Patent, 4923493, 1990-05-08Google Scholar
  31. 31.
    Valencia J A, Victory D J. Bubble cap tray for melting solids and method for using same. US Patent, 5265428, 1993-11-30Google Scholar
  32. 32.
    Hart A, Gnanendran N. Cryogenic CO2 capture in natural gas. Energy Procedia, 2009, 1(1): 697–706CrossRefGoogle Scholar
  33. 33.
    Lallemand F, Perdu G, Normand L, Weiss C, Magne-Drisch J, Gonnard S. Extending the treatment of highly sour gases: Cryogenic distillation, digital refining. Processing, Operation and Maintenance, 2014, 2014: 1–2Google Scholar
  34. 34.
    Kelley B T, Valencia J A, Northrop P S, Mart C J. Controlled Freeze Zone™for developing sour gas reserves. Energy Procedia, 2011, 4: 824–829CrossRefGoogle Scholar
  35. 35.
    Langé S, Pellegrini L A, Vergani P, Lo Savio M. Energy and economic analysis of a new low-temperature distillation process for the upgrading of high-CO2 content natural gas streams. Industrial & Engineering Chemistry Research, 2015, 54(40): 9770–9782CrossRefGoogle Scholar
  36. 36.
    Pellegrini L A. Process for the removal of CO2 from acid gas. Google Patents, WO 2014054945 A2, 2014-04-10Google Scholar
  37. 37.
    Baccanelli M. Analisi tecno-economica di soluzioni di processo a bassa temperatura per la produzione di LNG. Dissertation for the Master Degree. Milano: Politecnico di Milano, 2015 (in Italian)Google Scholar
  38. 38.
    AspenTech. ASPEN HYSYS®. Burlington, MA: AspenTech, 2014Google Scholar
  39. 39.
    Pellegrini L A, Moioli S, Brignoli F, Bellini C. LNG technology: The weathering in above-ground storage tanks. Industrial & Engineering Chemistry Research, 2014, 53(10): 3931–3937CrossRefGoogle Scholar
  40. 40.
    Donnelly H G, Katz D L. Phase equilibria in the carbon dioxide–methane system. Industrial & Engineering Chemistry, 1954, 46(3): 511–517CrossRefGoogle Scholar
  41. 41.
    Sobocinski D P, Kurata F. Heterogeneous phase-equilibria of the hydrogen sulfide-carbon dioxide system. AIChE Journal. American Institute of Chemical Engineers, 1959, 5(4): 545–551CrossRefGoogle Scholar
  42. 42.
    Davis J A, Rodewald N, Kurata F. Solid-liquid-vapor phase behavior of the methane-carbon dioxide system. AIChE Journal. American Institute of Chemical Engineers, 1962, 8(4): 537–539CrossRefGoogle Scholar
  43. 43.
    Im U K, Kurata F. Phase equilibrium of carbon dioxide and light paraffins in presence of solid carbon dioxide. Journal of Chemical & Engineering Data, 1971, 16(3): 295–299CrossRefGoogle Scholar
  44. 44.
    Shen T T, Gao T, LinWS, Gu A Z. Determination of CO2 solubility in saturated liquid CH4 + N2 and CH4 + C2H6 mixtures above atmospheric pressure. Journal of Chemical & Engineering Data, 2012, 57(8): 2296–2303CrossRefGoogle Scholar
  45. 45.
    Cheung H, Zander E H. Solubility of carbon dioxide and hydrogen sulfide in liquid hydrocarbons at cryogenic temperatures. Chemical Engineering Symposium Series, 1968, 64(88): 34–37Google Scholar
  46. 46.
    Brewer J, Kurata F. Freezing points of binary mixtures of methane. AIChE Journal. American Institute of Chemical Engineers, 1958, 4 (3): 317–321CrossRefGoogle Scholar
  47. 47.
    Streich M N. 2 removal from natural gas. Hydrocarbon Processing, 1970, 49(4): 86–88Google Scholar
  48. 48.
    Yokozeki A. Analytical equation of state for solid-liquid-vapor phases. International Journal of Thermophysics, 2003, 24(3): 589–620CrossRefGoogle Scholar
  49. 49.
    Stephanopoulos G. Chemical Process Control: An Introduction to Theory and Practice. New Jersey: Prentice Hall, 1984Google Scholar
  50. 50.
    Metz B, Davidson O, de Conik H, Loos M, Meyer L. IPCC Special Report on Carbon Dioxide Capture and Storage. Prepared by Working Group III of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2005Google Scholar
  51. 51.
    Perry R H, Green D W. Perry’s Chemical Engineers’ Handbook. 7th ed. Singapore: McGraw-Hill International Editions, 1997Google Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Stefania Moioli
    • 1
  • Laura A. Pellegrini
    • 1
  • Paolo Vergani
    • 2
  • Fabio Brignoli
    • 2
  1. 1.Department of Chemistry, Materials and Chemical Engineering “G. Natta”Politecnico di MilanoMilanoItaly
  2. 2.Maire Tecnimont S.p.A.MilanoItaly

Personalised recommendations