Head-to-tail cyclization of a heptapeptide eliminates its cytotoxicity and significantly increases its inhibition effect on amyloid β-protein fibrillation and cytotoxicity

Abstract

Amyloid-β (Aβ) protein aggregation is the main hallmark of Alzheimer’s disease (AD). Inhibition of Aβ fibrillation is thus a promising therapeutic approach to the prevention and treatment of AD. Recently, we designed a heptapeptide inhibitor, LVFFARK (LK7). LK7 shows a promising inhibitory capability on Aβ fibrillation, but is prone to self-assembling and displays high cytotoxicity, which would hinder its practical application. Herein, we modified LK7 by a head-to-tail cyclization and obtained a cyclic LK7 (cLK7). cLK7 exhibits a different self-assembly behavior from LK7, and has higher stability against proteolysis than LK7 and little cytotoxicity to SHSY5Y cells. Thermodynamic analysis revealed that both LK7 and cLK7 could bind to Aβ40 by electrostatic interactions, hydrogen bonding and hydrophobic interactions, but the binding affinity of cLK7 for Aβ40 (KD = 4.96 μmol/L) is six times higher than that of LK7 (KD = 32.2 μmol/L). The strong binding enables cLK7 to stabilize the secondary structure of Aβ40 and potently inhibit its nucleation, fibrillation and cytotoxicity at extensive concentration range, whereas LK7 could only moderately inhibit Aβ40 fibrillation and cytotoxicity at low concentrations. The findings indicate that the peptide cyclization is a promising approach to enhance the performance of peptide-based amyloid inhibitors.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Goedert M, Spillantini M G. A century of Alzheimer’s disease. Science, 2006, 314(5800): 777–781

    Article  CAS  PubMed  Google Scholar 

  2. 2.

    Hardy J, Selkoe D J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems on the road to therapeutics. Science, 2002, 297(5580): 353–356

    Article  CAS  Google Scholar 

  3. 3.

    Knowles T P, Vendruscolo M, Dobson C M. The amyloid state and its association with protein misfolding diseases. Nature Reviews. Molecular Cell Biology, 2014, 15(6): 384–396

    Article  CAS  PubMed  Google Scholar 

  4. 4.

    Selkoe D J. Soluble oligomers of the amyloid β-protein impair synaptic plasticity and behavior. Behavioural Brain Research, 2008, 192(1): 106–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Chimon S, Shaibat M A, Jones C R, Calero D C, Aizezi B, Ishii Y. Evidence of fibril-like β-sheet structures in a neurotoxic amyloid intermediate of Alzheimer’s β-amyloid. Nature Structural & Molecular Biology, 2008, 14(12): 1157–1164

    Article  CAS  Google Scholar 

  6. 6.

    Härd T, Lendel C. Inhibition of amyloid formation. Journal of Molecular Biology, 2012, 421(4): 441–465

    Article  CAS  PubMed  Google Scholar 

  7. 7.

    Wang Q M, Yu X, Li L Y, Zheng J. Inhibition of amyloid-β aggregation in Alzheimer’s disease. Current Pharmaceutical Design, 2014, 20(8): 1223–1243

    Article  CAS  PubMed  Google Scholar 

  8. 8.

    Craik D J, Fairlie D P, Liras S, Price D. The future of peptide-based drugs. Chemical Biology & Drug Design, 2013, 81(1): 136–147

    Article  CAS  Google Scholar 

  9. 9.

    Tjernberg L O, Näslund J, Lindqvist F, Johansson J, Karlström A R, Thyberg J, Terenius L, Nordstedt C. Arrest of β-amyloid fibril formation by a pentapeptide ligand. Journal of Biological Chemistry, 1996, 271(15): 8545–8548

    Article  CAS  PubMed  Google Scholar 

  10. 10.

    Liu F F, Du W J, Sun Y, Zheng J, Dong X Y. Atomistic characterization of binding modes and affinity of peptide inhibitors to amyloid-β protein. Frontiers of Chemical Science and Engineering, 2014, 8(4): 433–444

    Article  CAS  Google Scholar 

  11. 11.

    Soto C, Kindy M S, Baumann M, Frangione B. Inhibition of Alzheimer’s amyloidosis by peptides that prevent β-sheet conformation. Biochemical and Biophysical Research Communications, 1996, 226(3): 672–680

    Article  CAS  PubMed  Google Scholar 

  12. 12.

    Bansal S, Maurya I K, Yadav N, Thota C K, Kumar V, Tikoo K, Chauhan V S, Jain R. C-terminal fragment, Aβ 32-37, analogues protect against Aβ aggregation-induced toxicity. ACS Chemical Neuroscience, 2016, 7(5): 615–623

    Article  CAS  PubMed  Google Scholar 

  13. 13.

    Fradinger E A, Monien B H, Urbanc B, Lomakin A, Tan M, Li H, Spring S M, Condron M M, Cruz L, Xie C W, Benedek G B, Bitan G. C-terminal peptides coassemble into Aβ 42 oligomers and protect neurons against Aβ 42-induced neurotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(37): 14175–14180

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Takahashi T, Mihara H. Peptide and protein mimetics inhibiting amyloid β-peptide aggregation. Accounts of Chemical Research, 2008, 41(10): 1309–1318

    Article  CAS  PubMed  Google Scholar 

  15. 15.

    Turner J P, Lutzrechtin T, Moore K A, Rogers L, Bhave O, Moss M A, Servoss S L. Rationally designed peptoids modulate aggregation of amyloid-β 40. ACS Chemical Neuroscience, 2014, 5(7): 552–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Arai T, Sasaki D, Araya T, Sato T, Sohma Y, Kanai M. A cyclic KLVFF-derived peptide aggregation inhibitor induces the formation of less-toxic off-pathway amyloid-β oligomers. ChemBioChem, 2014, 15(17): 2577–2583

    Article  CAS  PubMed  Google Scholar 

  17. 17.

    Xiong N, Dong X Y, Zheng J, Liu F F, Sun Y. Design of LVFFARK and LVFFARK-functionalized nanoparticles for inhibiting amyloid β-protein fibrillation and cytotoxicity. ACS Applied Materials & Interfaces, 2015, 7(10): 5650–5662

    Article  CAS  Google Scholar 

  18. 18.

    Arai T, Araya T, Sasaki D, Taniguchi A, Sato T, Sohma Y, Kanai M. Rational design and identification of a non-peptidic aggregation inhibitor of amyloid-β based on a pharmacophore motif obtained from cyclo [-Lys-Leu-Val-Phe-Phe-]. Angewandte Chemie International Edition, 2014, 53(31): 8236–8239

    Article  CAS  PubMed  Google Scholar 

  19. 19.

    Luo J H, Otero J M, Yu C H, Wärmländer S K, Gräslund A, Overhand M, Abrahams J P. Inhibiting and reversing amyloid-β peptide (1–40) fibril formation with gramicidin S and engineered analogues. Chemistry (Weinheim an der Bergstrasse, Germany), 2013, 19(51): 17338–17348

    CAS  Google Scholar 

  20. 20.

    Cho P Y, Joshi G, Boersma M D, Johnson J A, Murphy R M. A cyclic peptide mimic of the β-amyloid binding domain on transthyretin. ACS Chemical Neuroscience, 2015, 6(5): 778–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Zheng J, Baghkhanian A M, Nowick J S. A hydrophobic surface is essential to inhibit the aggregation of a Tau-protein-derived hexapeptide. Journal of the American Chemical Society, 2013, 135(18): 6846–6852

    Article  CAS  PubMed  Google Scholar 

  22. 22.

    Richman M, Wilk S, Chemerovski M, Wärmländer S K T S, Wahlström A, Gräslund A, Rahimipour S. In vitro and mechanistic studies of an antiamyloidogenic self-assembled cyclic D,L-a-peptide architecture. Journal of the American Chemical Society, 2013, 135 (9): 3474–3484

    Article  CAS  PubMed  Google Scholar 

  23. 23.

    Choi S J, Jeong W J, Kang S K, Lee M, Kim E, Ryu D Y, Lim Y B. Differential self-assembly behaviors of cyclic and linear peptides. Biomacromolecules, 2012, 13(7): 1991–1995

    Article  CAS  PubMed  Google Scholar 

  24. 24.

    Ziehm T, Brener O, Groen T, Kadish I, Frenzel D, Tusche M, Kutzsche J, Reiss K, Gremer L, Nagel-Steger L, et al. Increase of positive net charge and conformational rigidity enhances the efficacy of D-enantiomeric peptides designed to eliminate cytotoxic Aβ species. ACS Chemical Neuroscience, 2016, 7(8): 1088–1096

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    March D R, Abbenante G, Bergman D A, Brinkworth R I, Wickramasinghe W, Begun J, Martin J L, Fairlie D P. Substratebased cyclic peptidomimetics of Phe-Ile-Val that Inhibit HIV-1 protease using a novel enzyme-binding mode. Journal of the American Chemical Society, 1996, 118(14): 3375–3379

    Article  CAS  Google Scholar 

  26. 26.

    Rezai T, Yu B, Millhauser G L, Jacobson M P, Lokey R S. Testing the conformational hypothesis of passive membrane permeability using synthetic cyclic peptide diastereomers. Journal of the American Chemical Society, 2006, 128(8): 2510–2511

    Article  CAS  PubMed  Google Scholar 

  27. 27.

    Wang Q M, Shah N, Zhao J, Wang C, Zhao C, Liu L, Li L Y, Zhou F, Zheng J. Structural, morphological, and kinetic studies of β-amyloid peptide aggregation on self-assembled monolayers. Physical Chemistry Chemical Physics, 2011, 13(33): 15200–15210

    Article  CAS  PubMed  Google Scholar 

  28. 28.

    Gordon D J, Sciarretta K L, Meredith S C. Inhibition of β-amyloid (40) fibrillogenesis and disassembly of β-amyloid (40) fibrils by short β-amyloid congeners containing N-methyl amino acids at alternate residues. Biochemistry, 2001, 40(28): 8237–8245

    Article  CAS  PubMed  Google Scholar 

  29. 29.

    Ferrie J J, Gruskos J J, Goldwaser A L, Decker M E, Guarracino D A. A comparative protease stability study of synthetic macrocyclic peptides that mimic two endocrine hormones. Bioorganic & Medicinal Chemistry Letters, 2013, 23(4): 989–995

    Article  CAS  Google Scholar 

  30. 30.

    Yu R, Seymour V A L, Berecki G, Jia X, Akcan M, Adams D J, Kaas Q, Craik D J. Less is more: Design of a highly stable disulfidedeleted mutant of analgesic cyclic α-conotoxin Vc1.1. Scientific Reports, 2015, 5(1): 13264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Cheng P N, Liu C, Zhao M, Eisenberg D, Nowick J S. Amyloid β-sheet mimics that antagonize protein aggregation and reduce amyloid toxicity. Nature Chemistry, 2012, 4(11): 927–933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Cabaleiro-Lago C, Szczepankiewicz O, Linse S. The effect of nanoparticles on amyloid aggregation depends on the protein stability and intrinsic aggregation rate. Langmuir, 2012, 28(3): 1852–1857

    Article  CAS  PubMed  Google Scholar 

  33. 33.

    Luo J H, Yu C H, Yu H X, Borstnar R, Kamerlin S C, Gräslund A, Abrahams J P, Wärmländer S K. Cellular polyamines promote amyloid-beta (Aβ) peptide fibrillation and modulate the aggregation pathways. ACS Chemical Neuroscience, 2013, 4(3): 454–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Micsonai A, Wien F, Kernya L, Lee Y H, Goto Y, Réfrégiers M, Kardos J. Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(24): 3095–3103

    Article  CAS  Google Scholar 

  35. 35.

    Choi H J, Huber A H, Weis W I. Thermodynamics of β-cateninligand interactions: The roles of the N-and C-terminal tails in modulating binding affinity. Journal of Biological Chemistry, 2006, 281(2): 1027–1038

    Article  CAS  PubMed  Google Scholar 

  36. 36.

    Wiseman T, Williston S, Brandts J F, Lin L N. Rapid measurement of binding constants and heats of binding using a new titration calorimeter. Analytical Biochemistry, 1989, 179(1): 131–137

    Article  CAS  PubMed  Google Scholar 

  37. 37.

    Freyer M W, Lewis E A. Isothermal titration calorimetry: Experimental design, data analysis, and probing macromolecule/ ligand binding and kinetic interactions. Methods in Cell Biology, 2008, 84: 79–113

    Article  CAS  PubMed  Google Scholar 

  38. 38.

    Fotakis G, Timbrell J A. In vitro cytotoxicity assays: Comparison of LDH, neutral red, MTT and protein assay in hepatoma cell lines following exposure to cadmium chloride. Toxicology Letters, 2006, 160(2): 171–177

    Article  CAS  PubMed  Google Scholar 

  39. 39.

    Gupta M, Bagaria A, Mishra A, Mathur P, Basu A, Ramakumar S, Chauhan V S. Self-assembly of a dipeptide-containing conformationally restricted dehydrophenylalanine residue to form ordered nanotubes. Advanced Materials, 2007, 19(6): 858–861

    Article  CAS  Google Scholar 

  40. 40.

    Huang R L, Su R X, Qi W, Zhao J, He Z M. Hierarchical, interfaceinduced self-assembly of diphenylalanine: Formation of peptide nanofibers and microvesicles. Nanotechnology, 2011, 22(24): 245609

    Article  CAS  PubMed  Google Scholar 

  41. 41.

    Biancalana M, Koide S. Molecular mechanism of thioflavin-T binding to amyloid fibrils. Biochimica et Biophysica Acta (BBA)-Proteins Proteomics, 2010, 1804(7): 1405–1412

    Article  CAS  Google Scholar 

  42. 42.

    Cohen S I, Linse S, Luheshi L M, Hellstrand E, White D A, Rajah L, Otzen D E, Vendruscolo M, Dobson C M, Knowles T P. Proliferation of amyloid-β 42 aggregates occurs through a secondary nucleation mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(24): 9758–9763

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Arosio P, Knowles T P, Linse S. On the lag phase in amyloid fibril formation. Physical Chemistry Chemical Physics, 2015, 17(12): 7606–7618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Zhao Z J, Zhu L, Li H Y, Cheng P, Peng J X, Yin Y D, Yang Y, Wang C, Hu Z Y, Yang Y L. Antiamyloidogenic activity of Aβ42-binding peptoid in modulating amyloid oligomerization. Small, 2017, 13(1): 1602857

    Article  CAS  Google Scholar 

  45. 45.

    Sugiura Y, Ikeda K, Nakano M. High membrane curvature enhances binding, conformational changes, and fibrillation of amyloid-β on lipid bilayer surfaces. Langmuir, 2015, 31(42): 11549–11557

    Article  CAS  PubMed  Google Scholar 

  46. 46.

    Nagarathinam A, Höflinger P, Bühler A, Schäfer C, Mcgovern G, Jeffrey M, Staufenbiel M, Jucker M, Baumann F. Membraneanchored Aβ accelerates amyloid formation and exacerbates amyloid-associated toxicity in mice. Journal of Neuroscience, 2013, 33(49): 19284–19294

    Article  CAS  PubMed  Google Scholar 

  47. 47.

    Bartolini M, Bertucci C, Bolognesi M L, Cavalli A, Melchiorre C, Andrisano V. Insight into the kinetic of amyloid-β (1–42) peptide self-aggregation: Elucidation of inhibitors’ mechanism of action. ChemBioChem, 2007, 8(17): 2152–2161

    Article  CAS  PubMed  Google Scholar 

  48. 48.

    Ehrnhoefer D E, Bieschke J, Boeddrich A, Herbst M, Masino L, Lurz R, Engemann S, Pastore A, Wanker E E. EGCG redirects amyloidogenic polypeptides into unstructured, off-pathway oligomers. Nature Structural & Molecular Biology, 2008, 15(6): 558–566

    Article  CAS  Google Scholar 

  49. 49.

    Du W J, Guo J J, Gao M T, Hu S Q, Dong X Y, Han Y F, Liu F F, Jiang S, Sun Y. Brazilin inhibits amyloid β-protein fibrillogenesis, remodels amyloid fibrils and reduces amyloid cytotoxicity. Scientific Reports, 2015, 5(1): 7992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Kumar S, Udgaonkar J B. Mechanisms of amyloid fibril formation by proteins. Current Science, 2010, 98(5): 639–656

    CAS  Google Scholar 

  51. 51.

    Tu Y L, Ma S, Liu F F, Sun Y, Dong X Y. Hematoxylin inhibits amyloid β-protein fibrillation and alleviates amyloid-induced cytotoxicity. Journal of Physical Chemistry B, 2016, 120(44): 11360–11368

    Article  CAS  Google Scholar 

  52. 52.

    Qiang W, Yau W M, Luo Y, Mattson M P, Tycko R. Antiparallel β-sheet architecture in iowa-mutant β-amyloid fibrils. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(12): 4443–4448

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Acerra N, Kad N M, Griffith D A, Ott S, Crowther D C, Mason J M. Retro-inversal of intracellular selected β-amyloid-interacting peptides: Implications for a novel Alzheimer’s disease treatment. Biochemistry, 2014, 53(13): 2101–2111

    Article  CAS  PubMed  Google Scholar 

  54. 54.

    Liu J, Wang W, Zhang Q, Zhang S H, Yuan Z. Study on the efficiency and interaction mechanism of a decapeptide inhibitor of β-amyloid aggregation. Biomacromolecules, 2014, 15(3): 931–939

    Article  CAS  PubMed  Google Scholar 

  55. 55.

    Ross P D, Subramanian S. Thermodynamics of protein association reactions: Forces contributing to stability. Biochemistry, 1981, 20 (11): 3096–3102

    Article  CAS  PubMed  Google Scholar 

  56. 56.

    Cairo C W, Strzelec A, Murphy R M, Kiessling L L. Affinity-based inhibition of β-amyloid toxicity. Biochemistry, 2002, 41(27): 8620–8629

    Article  CAS  PubMed  Google Scholar 

  57. 57.

    Liao Y H, Chang Y J, Yoshiike Y, Chang Y C, Chen Y R. Negatively charged gold nanoparticles inhibit Alzheimer’s amyloid-β fibrillization, induce fibril dissociation, and mitigate neurotoxicity. Small, 2012, 8(23): 3631–3639

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21376172, 21406160, 21528601 and 21621004) and the Natural Science Foundation of Tianjin from Tianjin Municipal Science and Technology Commission (Contract No. 16JCZDJC32300).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xiaoyan Dong.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, S., Zhang, H., Dong, X. et al. Head-to-tail cyclization of a heptapeptide eliminates its cytotoxicity and significantly increases its inhibition effect on amyloid β-protein fibrillation and cytotoxicity. Front. Chem. Sci. Eng. 12, 283–295 (2018). https://doi.org/10.1007/s11705-017-1687-2

Download citation

Keywords

  • Alzheimer’s disease
  • amyloid β-protein
  • cyclic peptide
  • inhibition
  • protein aggregation