Skip to main content
Log in

High-precision diffusion measurement of ethane and propane over SAPO-34 zeolites for methanol-to-olefin process

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The methanol-to-olefin (MTO) process has attracted much attention and many problems including lifetime and selectivity of light olefins have all been connected to the diffusion problems in zeolite crystals. However, a quantitative study of diffusion problems in SAPO-34 zeolites is lacking. In this paper, we performed a high-precision diffusion measurement of the diffusion behavior of ethane and propane, which represent ethylene and propylene respectively, over SAPO-34. The diffusions of ethane and propane over fresh and coked SAPO-34 zeolites with different crystal sizes were carefully studied. Ethane and propane show different diffusion behavior in SAPO-34. The diffusion of ethane is almost not influenced by the crystal size and coke percentage, whereas that of propane is strongly affected. A slower diffusion velocity was observed in bigger crystals, and the diffusion velocity decline significantly with the coke percentage increasing. The diffusion coefficient was calculated with both the internal and surface diffusion models, and the results show that the surface diffusion plays a key role in the diffusion process of both ethane and propane. We believe that this work would be helpful for understanding the diffusion of different molecules in SAPO-34 zeolites, and may lay the foundation of MTO research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Su D S, Wen G, Wu S, Peng F, Schlögl R. Carbocatalysis in liquidphase reactions. Angewandte Chemie International Edition, 2017, 56(4): 936–964

    Article  CAS  Google Scholar 

  2. Losch P, Pinar A B, Willinger M G, Soukup K, Chavan S, Vincent B, Pale P, Louis B. H-ZSM-5 zeolite model crystals: Structurediffusion-activity relationship in methanol-to-olefins catalysis. Journal of Catalysis, 2017, 345: 11–23

    Article  CAS  Google Scholar 

  3. Liang T, Chen J, Qin Z, Li J, Wang P, Wang S, Wang G, Dong M, Fan W, Wang J. Conversion of methanol to olefins over H-ZSM-5 zeolite: Reaction pathway is related to the framework aluminum siting. ACS Catalysis, 2016, 6(11): 7311–7325

    Article  CAS  Google Scholar 

  4. Fickel D W, Sabnis K D, Li L, Kulkarni N, Winter L R, Yan B, Chen J G. Chloromethane to olefins over H-SAPO-34: Probing the hydrocarbon pool mechanism. Applied Catalysis A, General, 2016, 527: 146–151

    Article  CAS  Google Scholar 

  5. Li Y, Zhang M, Wang D, Wei F, Wang Y. Differences in the methanol-to-olefins reaction catalyzed by SAPO-34 with dimethyl ether as reactant. Journal of Catalysis, 2014, 311: 281–287

    Article  CAS  Google Scholar 

  6. Li J, Wei Y, Liu G, Qi Y, Tian P, Li B, He Y, Liu Z. Comparative study of MTO conversion over SAPO-34, H-ZSM-5 and H-ZSM-22: Correlating catalytic performance and reaction mechanism to zeolite topology. Catalysis Today, 2011, 171(1): 221–228

    Article  CAS  Google Scholar 

  7. Sun X, Mueller S, Shi H, Haller G L, Sanchez-Sanchez M, van Veen A C, Lercher J A. On the impact of co-feeding aromatics and olefins for the methanol-to-olefins reaction on HZSM-5. Journal of Catalysis, 2014, 314: 21–31

    Article  CAS  Google Scholar 

  8. Sun X, Mueller S, Liu Y, Shi H, Haller G L, Sanchez-Sanchez M, van Veen A C, Lercher J A. On reaction pathways in the conversion of methanol to hydrocarbons on HZSM-5. Journal of Catalysis, 2014, 317: 185–197

    Article  CAS  Google Scholar 

  9. Ilias S, Bhan A. Mechanism of the catalytic conversion of methanol to hydrocarbons. ACS Catalysis, 2013, 3(1): 18–31

    Article  CAS  Google Scholar 

  10. Zhou H, Wang Y, Wei F, Wang D, Wang Z. Kinetics of the reactions of the light alkenes over SAPO-34. Applied Catalysis A, General, 2008, 348(1): 135–141

    Article  CAS  Google Scholar 

  11. Li M, Wang Y, Bai L, Chang N, Nan G, Hu D, Zhang Y, Wei W. Solvent-free synthesis of SAPO-34 nanocrystals with reduced template consumption for methanol-to-olefins process. Applied Catalysis A, General, 2017, 531: 203–211

    Article  CAS  Google Scholar 

  12. Wu X C, Abraha M G, Anthony R G. Methanol conversion on SAPO-34: Reaction condition for fixed-bed reactor. Applied Catalysis A, General, 2004, 260(1): 63–69

    Article  CAS  Google Scholar 

  13. Wei Y, Li J, Yuan C, Xu S, Zhou Y, Chen J, Wang Q, Zhang Q, Liu Z. Generation of diamondoid hydrocarbons as confined compounds in SAPO-34 catalyst in the conversion of methanol. Chemical Communications, 2012, 48(25): 3082

    Article  CAS  Google Scholar 

  14. Li Y, Huang Y, Guo J, Zhang M, Wang D, Wei F, Wang Y. Hierarchical SAPO-34/18 zeolite with low acid site density for converting methanol to olefins. Catalysis Today, 2014, 233: 2–7

    Article  CAS  Google Scholar 

  15. Wei Z, Chen Y, Li J, Wang P, Jing B, He Y, Dong M, Jiao H, Qin Z, Wang J, et al. Methane formation mechanism in the initial methanolto-olefins process catalyzed by SAPO-34. Catalysis Science & Technology, 2016, 6(14): 5526–5533

    Article  CAS  Google Scholar 

  16. Xu S, Zheng A, Wei Y, Chen J, Li J, Chu Y, Zhang M, Wang Q, Zhou Y, Wang J, et al. Direct observation of cyclic carbenium ions and their role in the catalytic cycle of the methanol-to-olefin reaction over chabazite zeolites. Angewandte Chemie International Edition, 2013, 52(44): 11564–11568

    Article  CAS  Google Scholar 

  17. Qi L, Li J, Wei Y, Xu L, Liu Z. Role of naphthalene during the induction period of methanol conversion on HZSM-5 zeolite. Catalysis Science & Technology, 2016, 6(11): 3737–3744

    Article  CAS  Google Scholar 

  18. Wei Y, Yuan C, Li J, Xu S, Zhou Y, Chen J, Wang Q, Xu L, Qi Y, Zhang Q, Liu Z. Coke formation and carbon atom economy of methanol-to-olefins reaction. ChemSusChem, 2012, 5(5): 906–912

    Article  CAS  Google Scholar 

  19. Tian P, Wei Y, Ye M, Liu Z. Methanol to olefins (MTO): From fundamentals to commercialization. ACS Catalysis, 2015, 5(3): 1922–1938

    Article  CAS  Google Scholar 

  20. Chen D, Rebo H P, Moljord K, Holmen A. Methanol conversion to light olefins over SAPO-34. Sorption, diffusion, and catalytic reactions. Industrial & Engineering Chemistry Research, 1999, 38 (11): 4241–4249

    Article  CAS  Google Scholar 

  21. Aguayo A T, Del Campo A, Gayubo A G, Tarrio A, Bilbao J. Deactivation by coke of a catalyst based on a SAPO-34 in the transformation of methanol into olefins. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 1999, 74 (4): 315–321

    Article  CAS  Google Scholar 

  22. Hwang A, Prieto-Centurion D, Bhan A. Isotopic tracer studies of methanol-to-olefins conversion over HSAPO-34: The role of the olefins-based catalytic cycle. Journal of Catalysis, 2016, 337: 52–56

    Article  CAS  Google Scholar 

  23. Yang G, Wei Y, Xu S, Chen J, Li J, Liu Z, Yu J, Xu R. Nanosizeenhanced lifetime of SAPO-34 catalysts in methanol-to-olefin reactions. Journal of Physical Chemistry C, 2013, 117(16): 8214–8222

    Article  CAS  Google Scholar 

  24. Zhu W, Kapteijn F, Moulijn J A, den Exter M C, Jansen J C. Shape selectivity in adsorption on the all-silica DD3R. Langmuir, 2000, 16 (7): 3322–3329

    Article  CAS  Google Scholar 

  25. Olson D H, Camblor M A, Villaescusa L A, Kuehl G H. Light hydrocarbon sorption properties of pure silica Si-CHA and ITQ-3 and high silica ZSM-58. Microporous and Mesoporous Materials, 2004, 67(1): 27–33

    Article  CAS  Google Scholar 

  26. Cui Y, Zhang Q, He J, Wang Y, Wei F. Pore-structure-mediated hierarchical SAPO-34: Facile synthesis, tunable nanostructure, and catalysis applications for the conversion of dimethyl ether into olefins. Particuology, 2013, 11(4): 468–474

    Article  CAS  Google Scholar 

  27. Bhatia S K, Perlmutter D D. A random pore model for fluid-solid reactions: II. Diffusion and transport effects. AIChE Journal. American Institute of Chemical Engineers, 1981, 27(2): 247–254

    Article  CAS  Google Scholar 

  28. Thiele E W. Relation between catalytic activity and size of particle. Industrial & Engineering Chemistry, 1939, 31(7): 916–920

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, D., Cui, Y., Jia, Z. et al. High-precision diffusion measurement of ethane and propane over SAPO-34 zeolites for methanol-to-olefin process. Front. Chem. Sci. Eng. 12, 77–82 (2018). https://doi.org/10.1007/s11705-017-1684-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1684-5

Keywords

Navigation