Advertisement

Novel 1,2,3-triazole-based compounds: Iodo effect on their gelation behavior and cation response

  • Yaodong Huang
  • Shuxue Liu
  • Zhuofeng Xie
  • Zipei Sun
  • Wei Chai
  • Wei Jiang
Research Article
  • 54 Downloads

Abstract

Two new series of 1,2,3-triazole derivatives, with and without iodo substitution, were synthesized and their gelation properties were measured. It was found that the iodo substitution at position 5 of triazole ring could greatly enhance the gelation ability. Scanning electron microscopy and X-ray diffraction reveal that the structures of the organogels from iodo and hydrogenous gelators are totally different. Iodo gels are selectively responsive to the stimuli of Hg2+, whereas hydrogenous gels can respond to Hg2+ and Cu2+. Moreover, the reversible gel-sol transition of hydrogenous gels can be controlled by redox reaction or tuned with suitable chemicals. The single crystal analysis of reference compound (C2) suggests that there are intermolecular and intramolecular non-classical hydrogen bonding interactions but no π-π interaction in hydrogenous gelator. The great difference between the two series of compounds results from the iodo effect and implies the existence of halogen bonding interaction in the iodo compounds.

Keywords

organogelator 1,2,3-triazole derivatives self-assembly halogen bonding cation response 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of Tianjin (No. 15JCYBJC20100).

Supplementary material

11705_2017_1683_MOESM1_ESM.pdf (2.3 mb)
Novel 1,2,3-triazole-based compounds: Iodo effect on their gelation behavior and cation response

References

  1. 1.
    Sung S, Park S, Lee W J, Son J, Kim C H, Kim Y, Noh D Y, YoonM H. Low-voltage flexible organic electronics based on highperformance sol-gel titanium dioxide dielectric. ACS Applied Materials & Interfaces, 2015, 7(14): 7456–7461CrossRefGoogle Scholar
  2. 2.
    Das A, Ghosh S. Supramolecular assemblies by charge-transfer interactions between donor and acceptor chromophores. Angewandte Chemie International Edition, 2014, 45(18): 2038–2054CrossRefGoogle Scholar
  3. 3.
    Babu S S, Praveen V K, Ajayaghosh A. Functional p-gelators and their applications. American Chemical Society, 2014, 114(4): 1973–2129Google Scholar
  4. 4.
    Han J, Song J, Hao Z, Yu H, Han J. Self-assembly of Schiff base organogelator with enhanced fluorescence emission. Chinese Journal of Chemistry, 2015, 33(1): 137–140CrossRefGoogle Scholar
  5. 5.
    Choi T J, Chang J Y. Preparation of thermochromic polymer nanocomposite films from polymerizable organogels of oligothiophene-based organogelators. Macromolecular Research, 2016, 24 (12): 1055–1061CrossRefGoogle Scholar
  6. 6.
    Lüer L, Rajendran S K, Stoll T, Ganzer L, Rehault J, Coles D M, Lidzey D, Virgili T, Cerullo G. Lévy defects in matrix-immobilized J aggregates: Tracing intra-and intersegmental exciton relaxation. Journal of Physical Chemistry Letters, 2017, 8(3): 547–552CrossRefPubMedGoogle Scholar
  7. 7.
    Kumar R J, MacDonald J M, Singh T B, Waddington L J, Holmes A B. Hierarchical self-assembly of semiconductor functionalized peptide a-helices and optoelectronic properties. Journal of the American Chemical Society, 2011, 133(22): 8564–8573CrossRefPubMedGoogle Scholar
  8. 8.
    Kim H, Chang J Y. White light emission from a mixed organogel of lanthanide(III)-containing organogelators. RSC Advances, 2013, 3 (6): 1774–1780CrossRefGoogle Scholar
  9. 9.
    Pang X, Yu X, Xie D, Li Y, Geng L, Ren J, Zhen X. Tunable multicolor emissions in monocomponent gel system by varying solvents, temperature and fluoride anion. Organic & Biomolecular Chemistry, 2016, 14(47): 11176–11182CrossRefGoogle Scholar
  10. 10.
    Sun J, Xue P, Sun J, Gong P, Wang P, Lu R. Strong blue emissive nanofibers constructed from benzothizole modified tert-butyl carbazole derivative for the detection of volatile acid vapors. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2015, 3(34): 8888–8894CrossRefGoogle Scholar
  11. 11.
    Zhai Y, Chai W, Cao W W, Sun Z P, Huang Y D. Organogelators based on p-alkoxylbenzamide and their self-assembling properties. Frontiers of Chemical Science and Engineering, 2015, 9(4): 488–493CrossRefGoogle Scholar
  12. 12.
    Cheng H B, Li Z, Huang Y D, Liu L, Wu H C. A pillararene-based AIE-active supramolecular system for simultaneous detection and removal of mercury(II) in water. ACS Applied Materials & Interfaces, 2017, 9(13): 11889–11894CrossRefGoogle Scholar
  13. 13.
    Zhao Z, Lam J W Y, Tang B Z. Self-assembly of organic luminophores with gelation-enhanced emission characteristics. Soft Matter, 2013, 9(18): 4564–4579CrossRefGoogle Scholar
  14. 14.
    Zhao Y, Sakai F, Su L, Liu Y, Wei K, Chen G, Jiang M. Progressive macromolecular self-assembly: From biomimetic chemistry to bioinspired materials. Advanced Materials, 2013, 25(37): 5215–5256CrossRefPubMedGoogle Scholar
  15. 15.
    Piepenbrock M O M, Lloyd G O, Clarke N, Steed J W. Metal-and anion-binding supramolecular gels. Chemical Reviews, 2010, 110 (4): 1960–2004CrossRefPubMedGoogle Scholar
  16. 16.
    Van Herrikhuyzen J, George S J, Vos M R J, Sommerdijk N A J M, Ajayaghosh A, Meskers S C J, Schenning A P H J. Self-assembled hybrid oligo(p-phenylenevinylene)-gold nanoparticle tapes. Angewandte Chemie, 2007, 46(11): 1825–1828CrossRefPubMedGoogle Scholar
  17. 17.
    Sugiyasu K, Fujita N, Shinkai S. Visible-light-harvesting organogel composed of cholesterol-based perylene derivatives. Angewandte Chemie, 2004, 43(10): 1229–1233CrossRefPubMedGoogle Scholar
  18. 18.
    Suzuki M, Yumoto M, Kimura M, Shiraib H, Hanabusa K. Novel family of low molecular weight hydrogelators based on L-lysine derivatives. Chemical Communications, 2002, 33(8): 884–885CrossRefGoogle Scholar
  19. 19.
    Abdallah D J, Weiss R G. Organogels and low molecular-mass organic gelators. Advanced Materials, 2000, 12(17): 1237–1247CrossRefGoogle Scholar
  20. 20.
    Meazza L, Foster J A, Fucke K, Metrangolo P, Resnati G, Steed J W. Halogen-bonding-triggered supramolecular gel formation. Nature Chemistry, 2013, 5(1): 42–47CrossRefPubMedGoogle Scholar
  21. 21.
    Feng Y, Chen H, Liu Z X, He Y M, Fan Q H. A pronounced halogen effect on the organogelation properties of peripherally halogen functionalized poly(benzyl ether) dendrons. Chemistry (Weinheim an der Bergstrasse, Germany), 2016, 22(14): 4980–4990Google Scholar
  22. 22.
    Bhattacharjee S, Bhattacharya S. Remarkable role of C–I$$$N halogen bonding in thixotropic ‘halo’gel formation. Langmuir, 2016, 32(17): 4270–4277CrossRefPubMedGoogle Scholar
  23. 23.
    Bertolani A, Pirrie L, Stefan L, Houbenov N, Haataja J S, Catalano L, Terraneo G, Giancane G, Valli L, Milani R, Ikkala O, Resnati G, Metrangolo P. Supramolecular amplification of amyloid selfassembly by iodination. Nature Communications, 2015, 6: 7574CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Huang Y, Zhang Y, Yuan Y, Cao W. Organogelators based on iodo 1, 2, 3-triazole functionalized with coumarin: Properties and gelatorsolvent interaction. Tetrahedron, 2015, 71(14): 2124–2133CrossRefGoogle Scholar
  25. 25.
    Li Z, Huang Y, Fan D, Li H, Liu S, Wang L. Synthesis and properties of novel organogelators functionalized with 5-iodo-1, 2, 3-triazole and azobenzene groups. Frontiers of Chemical Science and Engineering, 2016, 10(4): 552–561CrossRefGoogle Scholar
  26. 26.
    Huang Y D, Li H M, Li Z Y, Zhang Y, Cao W W, Wang L Y, Liu S X. Unusual C–I...O halogen bonding in triazole derivatives: Gelation solvents at two extremes of polarity and formation of superorganogels. Langmuir, 2017, 33(1): 311–321CrossRefPubMedGoogle Scholar
  27. 27.
    Wu Y M, Deng J, Li Y, Chen Q Y. Regiospecific synthesis of 1, 4, 5-trisubstituted-1, 2, 3-triazole via one-pot reaction promoted by copper(I) salt. Synthesis, 2005, 36(43): 1314–1318CrossRefGoogle Scholar
  28. 28.
    Schulze B, Schubert U S. Beyond click chemistry—supramolecular interactions of 1, 2, 3-triazoles. Chemical Society Reviews, 2014, 43 (8): 2522–2571CrossRefPubMedGoogle Scholar
  29. 29.
    Janiak C. A critical account on p-p stacking in metal complexes with aromatic nitrogen-containing ligands. Journal of the Chemical Society, Dalton Transactions: Inorganic Chemistry, 2000, 32(11): 3885–3896CrossRefGoogle Scholar
  30. 30.
    Linse P. Orientation-averaged benzene-benzene potential of mean force in aqueous solution. Journal of the American Chemical Society, 1993, 115(19): 8793–8797CrossRefGoogle Scholar
  31. 31.
    Lai L L, Wang C H, Hsieh W P, Lin H C. Synthesis and characterization of liquid crystalline molecules containing the ouinoline unit. Molecular Crystals and Liquid Crystals (Philadelphia, Pa.), 1996, 287(1): 177–181Google Scholar
  32. 32.
    Bhalla V, Singh H, Kumar M, Prasad S K. Triazole-modified triphenylene derivative: Self-assembly and sensing applications. Langmuir, 2011, 27(24): 15275–15281CrossRefPubMedGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Yaodong Huang
    • 1
  • Shuxue Liu
    • 1
  • Zhuofeng Xie
    • 1
  • Zipei Sun
    • 1
  • Wei Chai
    • 1
  • Wei Jiang
    • 1
  1. 1.Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina

Personalised recommendations