Skip to main content
Log in

Novel 1,2,3-triazole-based compounds: Iodo effect on their gelation behavior and cation response

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Two new series of 1,2,3-triazole derivatives, with and without iodo substitution, were synthesized and their gelation properties were measured. It was found that the iodo substitution at position 5 of triazole ring could greatly enhance the gelation ability. Scanning electron microscopy and X-ray diffraction reveal that the structures of the organogels from iodo and hydrogenous gelators are totally different. Iodo gels are selectively responsive to the stimuli of Hg2+, whereas hydrogenous gels can respond to Hg2+ and Cu2+. Moreover, the reversible gel-sol transition of hydrogenous gels can be controlled by redox reaction or tuned with suitable chemicals. The single crystal analysis of reference compound (C2) suggests that there are intermolecular and intramolecular non-classical hydrogen bonding interactions but no π-π interaction in hydrogenous gelator. The great difference between the two series of compounds results from the iodo effect and implies the existence of halogen bonding interaction in the iodo compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sung S, Park S, Lee W J, Son J, Kim C H, Kim Y, Noh D Y, YoonM H. Low-voltage flexible organic electronics based on highperformance sol-gel titanium dioxide dielectric. ACS Applied Materials & Interfaces, 2015, 7(14): 7456–7461

    Article  CAS  Google Scholar 

  2. Das A, Ghosh S. Supramolecular assemblies by charge-transfer interactions between donor and acceptor chromophores. Angewandte Chemie International Edition, 2014, 45(18): 2038–2054

    Article  CAS  Google Scholar 

  3. Babu S S, Praveen V K, Ajayaghosh A. Functional p-gelators and their applications. American Chemical Society, 2014, 114(4): 1973–2129

    CAS  Google Scholar 

  4. Han J, Song J, Hao Z, Yu H, Han J. Self-assembly of Schiff base organogelator with enhanced fluorescence emission. Chinese Journal of Chemistry, 2015, 33(1): 137–140

    Article  CAS  Google Scholar 

  5. Choi T J, Chang J Y. Preparation of thermochromic polymer nanocomposite films from polymerizable organogels of oligothiophene-based organogelators. Macromolecular Research, 2016, 24 (12): 1055–1061

    Article  CAS  Google Scholar 

  6. Lüer L, Rajendran S K, Stoll T, Ganzer L, Rehault J, Coles D M, Lidzey D, Virgili T, Cerullo G. Lévy defects in matrix-immobilized J aggregates: Tracing intra-and intersegmental exciton relaxation. Journal of Physical Chemistry Letters, 2017, 8(3): 547–552

    Article  CAS  PubMed  Google Scholar 

  7. Kumar R J, MacDonald J M, Singh T B, Waddington L J, Holmes A B. Hierarchical self-assembly of semiconductor functionalized peptide a-helices and optoelectronic properties. Journal of the American Chemical Society, 2011, 133(22): 8564–8573

    Article  CAS  PubMed  Google Scholar 

  8. Kim H, Chang J Y. White light emission from a mixed organogel of lanthanide(III)-containing organogelators. RSC Advances, 2013, 3 (6): 1774–1780

    Article  CAS  Google Scholar 

  9. Pang X, Yu X, Xie D, Li Y, Geng L, Ren J, Zhen X. Tunable multicolor emissions in monocomponent gel system by varying solvents, temperature and fluoride anion. Organic & Biomolecular Chemistry, 2016, 14(47): 11176–11182

    Article  CAS  Google Scholar 

  10. Sun J, Xue P, Sun J, Gong P, Wang P, Lu R. Strong blue emissive nanofibers constructed from benzothizole modified tert-butyl carbazole derivative for the detection of volatile acid vapors. Journal of Materials Chemistry. C, Materials for Optical and Electronic Devices, 2015, 3(34): 8888–8894

    Article  CAS  Google Scholar 

  11. Zhai Y, Chai W, Cao W W, Sun Z P, Huang Y D. Organogelators based on p-alkoxylbenzamide and their self-assembling properties. Frontiers of Chemical Science and Engineering, 2015, 9(4): 488–493

    Article  CAS  Google Scholar 

  12. Cheng H B, Li Z, Huang Y D, Liu L, Wu H C. A pillararene-based AIE-active supramolecular system for simultaneous detection and removal of mercury(II) in water. ACS Applied Materials & Interfaces, 2017, 9(13): 11889–11894

    Article  CAS  Google Scholar 

  13. Zhao Z, Lam J W Y, Tang B Z. Self-assembly of organic luminophores with gelation-enhanced emission characteristics. Soft Matter, 2013, 9(18): 4564–4579

    Article  CAS  Google Scholar 

  14. Zhao Y, Sakai F, Su L, Liu Y, Wei K, Chen G, Jiang M. Progressive macromolecular self-assembly: From biomimetic chemistry to bioinspired materials. Advanced Materials, 2013, 25(37): 5215–5256

    Article  CAS  PubMed  Google Scholar 

  15. Piepenbrock M O M, Lloyd G O, Clarke N, Steed J W. Metal-and anion-binding supramolecular gels. Chemical Reviews, 2010, 110 (4): 1960–2004

    Article  CAS  PubMed  Google Scholar 

  16. Van Herrikhuyzen J, George S J, Vos M R J, Sommerdijk N A J M, Ajayaghosh A, Meskers S C J, Schenning A P H J. Self-assembled hybrid oligo(p-phenylenevinylene)-gold nanoparticle tapes. Angewandte Chemie, 2007, 46(11): 1825–1828

    Article  CAS  PubMed  Google Scholar 

  17. Sugiyasu K, Fujita N, Shinkai S. Visible-light-harvesting organogel composed of cholesterol-based perylene derivatives. Angewandte Chemie, 2004, 43(10): 1229–1233

    Article  CAS  PubMed  Google Scholar 

  18. Suzuki M, Yumoto M, Kimura M, Shiraib H, Hanabusa K. Novel family of low molecular weight hydrogelators based on L-lysine derivatives. Chemical Communications, 2002, 33(8): 884–885

    Article  CAS  Google Scholar 

  19. Abdallah D J, Weiss R G. Organogels and low molecular-mass organic gelators. Advanced Materials, 2000, 12(17): 1237–1247

    Article  CAS  Google Scholar 

  20. Meazza L, Foster J A, Fucke K, Metrangolo P, Resnati G, Steed J W. Halogen-bonding-triggered supramolecular gel formation. Nature Chemistry, 2013, 5(1): 42–47

    Article  CAS  PubMed  Google Scholar 

  21. Feng Y, Chen H, Liu Z X, He Y M, Fan Q H. A pronounced halogen effect on the organogelation properties of peripherally halogen functionalized poly(benzyl ether) dendrons. Chemistry (Weinheim an der Bergstrasse, Germany), 2016, 22(14): 4980–4990

    CAS  Google Scholar 

  22. Bhattacharjee S, Bhattacharya S. Remarkable role of C–I$$$N halogen bonding in thixotropic ‘halo’gel formation. Langmuir, 2016, 32(17): 4270–4277

    Article  CAS  PubMed  Google Scholar 

  23. Bertolani A, Pirrie L, Stefan L, Houbenov N, Haataja J S, Catalano L, Terraneo G, Giancane G, Valli L, Milani R, Ikkala O, Resnati G, Metrangolo P. Supramolecular amplification of amyloid selfassembly by iodination. Nature Communications, 2015, 6: 7574

    Article  PubMed  PubMed Central  Google Scholar 

  24. Huang Y, Zhang Y, Yuan Y, Cao W. Organogelators based on iodo 1, 2, 3-triazole functionalized with coumarin: Properties and gelatorsolvent interaction. Tetrahedron, 2015, 71(14): 2124–2133

    Article  CAS  Google Scholar 

  25. Li Z, Huang Y, Fan D, Li H, Liu S, Wang L. Synthesis and properties of novel organogelators functionalized with 5-iodo-1, 2, 3-triazole and azobenzene groups. Frontiers of Chemical Science and Engineering, 2016, 10(4): 552–561

    Article  CAS  Google Scholar 

  26. Huang Y D, Li H M, Li Z Y, Zhang Y, Cao W W, Wang L Y, Liu S X. Unusual C–I...O halogen bonding in triazole derivatives: Gelation solvents at two extremes of polarity and formation of superorganogels. Langmuir, 2017, 33(1): 311–321

    Article  CAS  PubMed  Google Scholar 

  27. Wu Y M, Deng J, Li Y, Chen Q Y. Regiospecific synthesis of 1, 4, 5-trisubstituted-1, 2, 3-triazole via one-pot reaction promoted by copper(I) salt. Synthesis, 2005, 36(43): 1314–1318

    Article  CAS  Google Scholar 

  28. Schulze B, Schubert U S. Beyond click chemistry—supramolecular interactions of 1, 2, 3-triazoles. Chemical Society Reviews, 2014, 43 (8): 2522–2571

    Article  CAS  PubMed  Google Scholar 

  29. Janiak C. A critical account on p-p stacking in metal complexes with aromatic nitrogen-containing ligands. Journal of the Chemical Society, Dalton Transactions: Inorganic Chemistry, 2000, 32(11): 3885–3896

    Article  Google Scholar 

  30. Linse P. Orientation-averaged benzene-benzene potential of mean force in aqueous solution. Journal of the American Chemical Society, 1993, 115(19): 8793–8797

    Article  CAS  Google Scholar 

  31. Lai L L, Wang C H, Hsieh W P, Lin H C. Synthesis and characterization of liquid crystalline molecules containing the ouinoline unit. Molecular Crystals and Liquid Crystals (Philadelphia, Pa.), 1996, 287(1): 177–181

    CAS  Google Scholar 

  32. Bhalla V, Singh H, Kumar M, Prasad S K. Triazole-modified triphenylene derivative: Self-assembly and sensing applications. Langmuir, 2011, 27(24): 15275–15281

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Tianjin (No. 15JCYBJC20100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaodong Huang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Liu, S., Xie, Z. et al. Novel 1,2,3-triazole-based compounds: Iodo effect on their gelation behavior and cation response. Front. Chem. Sci. Eng. 12, 252–261 (2018). https://doi.org/10.1007/s11705-017-1683-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1683-6

Keywords

Navigation