Metal cation removal by P(VC-r-AA) copolymer ultrafiltration membranes

  • Nachuan Wang
  • Jun Wang
  • Peng Zhang
  • Wenbin Wang
  • Chuangchao Sun
  • Ling Xiao
  • Chen Chen
  • Bin Zhao
  • Qingran Kong
  • Baoku Zhu
Research Article


A series of amphiphilic copolymers containing poly(vinyl chloride-r-acrylic acid) (P(VC-r-AA) ) was synthesized and used to prepare membranes via a nonsolvent induced phase separation method. The prepared membranes were characterized by scanning electron microscopy, X-ray photoelectron spectroscopy, and water contact angle and zeta potential measurements. The copolymer P(VC-r-AA) chains did not dissolved in a coagulation bath, indicating that the AA segments were completely retained within the membrane. Enriching degree of AA segments in surface layer was 2 for copolymer membrane. In addition, the introduction of AA segments made the membrane electronegative and hydrophilic so that the membrane was sensitive to the solution pH. The fouling resistance, adsorption of Cu(II), Cr(III) and Ce(IV) ions and the desorption properties of the membranes were also determined. The copolymer membranes exhibited good antifouling performance with a fouling reversibility of 92%. The membranes also had good adsorption capacities for Cu(II), Cr(III) and Ce(IV) ions. The optimal pH for Cu(II) adsorption was 6 and the copolymer membrane has potential applications for low concentration Cu(II) removal.


poly(vinyl chloride-r-acrylic acid) negatively charged PVC membrane anti-fouling heavy metal adsorption Cu(II) removal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research was supported by the National High Technology Research and Development Program of China (Granted No. 2012AA03A602), the National Basic Research Program of China (Granted No. 2009CB623402) and the National Natural Science Foundation of China (Grant No. 20974094).


  1. 1.
    Shannon M A, Bohn P W, Elimelech M, Georgiadis J G, Marinas B J, Mayes A M. Science and technology for water purification in the coming decades. Nature, 2008, 452(7185): 301–310CrossRefGoogle Scholar
  2. 2.
    Yang Q, Adrus N, Tomicki F, Ulbricht M. Composites of functional polymeric hydrogels and porous membranes. Journal of Materials Chemistry, 2011, 21(21): 2783–2811CrossRefGoogle Scholar
  3. 3.
    Zhang G L, Lin L, Meng Q, Xu Y Y. Distillation of methanol–water solution in hollow fibers. Separation and Purification Technology, 2007, 56(2): 143–149CrossRefGoogle Scholar
  4. 4.
    Arnal J M, Garcia-Fayos B, Verdu G, Lora J. Ultrafiltration as an alternative membrane technology to obtain safe drinking water from surface water: 10 years of experience on the scope of the AQUAPOT Project. Desalination, 2009, 248(1): 34–41CrossRefGoogle Scholar
  5. 5.
    Goncalves B. Asymmetric polysulfone and polyethersulfone membranes: Effects of thermodynamic conditions during formation on their performance. Journal of Membrane Science, 2000, 169(2): 287–299CrossRefGoogle Scholar
  6. 6.
    Idris A, Zain N M, Noordin M Y. Synthesis, characterization and performance of asymmetric polyethersulfone(PES) ultrafiltration membranes with polyethylene glycol of different molecular weights as additives. Desalination, 2007, 207(1-3): 324–339CrossRefGoogle Scholar
  7. 7.
    Chakrabarty B, Ghoshal A K, Purkait M K. Preparation, characterization and performance studies of polysulfone membranes using PVP as an additive. Journal of Membrane Science, 2008, 315(1): 36–47CrossRefGoogle Scholar
  8. 8.
    Zhang J, Xu Z, Mai W, Min C, Zhou B, Shan M, Li Y, Yang C, Wang Z, Qian X. Improved hydrophilicity, permeability, antifouling and mechanical performance of PVDF composite ultrafiltration membranes tailored by oxidized low-dimensional carbon nanomaterials. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(9): 3101–3111CrossRefGoogle Scholar
  9. 9.
    Kang G, Cao Y. Application and modification of poly(vinylidene fluoride)(PVDF) membranes—a review. Journal of Membrane Science, 2014, 463(1): 145–165CrossRefGoogle Scholar
  10. 10.
    Kim I C, Yun H G, Lee K H. Preparation of asymmetric polyacrylonitrile membrane with small pore size by phase inversion and post-treatment process. Journal of Membrane Science, 2002, 199(1-2): 75–84CrossRefGoogle Scholar
  11. 11.
    Wan L S, Xu Z K, Wang Z G. Leaching of PVP from polyacrylonitrile/PVP blending membranes: A comparative study of asymmetric and dense membranes. Journal of Polymer Science. Part B, Polymer Physics, 2006, 44(10): 1490–1498CrossRefGoogle Scholar
  12. 12.
    Yang S, Liu Z. Preparation and characterization of polyacrylonitrile ultrafiltration membranes. Journal of Membrane Science, 2005, 246(1): 7–12CrossRefGoogle Scholar
  13. 13.
    Ghazanfari D, Bastani D, Mousavi S A. Preparation and characterization of poly(vinyl chloride)(PVC) based membrane for wastewater treatment. Journal of Water Process Engineering, 2017, 16: 98–107CrossRefGoogle Scholar
  14. 14.
    Liu W D, Zhang Y H, Fang L F, Zhu B K, Zhu L P. Antifouling property of poly(vinyl chloride) membranes modified by amphiphilic copolymers P(MMA-b-MAA). Chinese Journal of Polymer Science, 2012, 30(4): 568–577CrossRefGoogle Scholar
  15. 15.
    Fang L F, Zhu B K, Zhu L P, Matsuyama H, Zhao S F. Structures and antifouling properties of polyvinyl chloride/poly(methyl methacrylate)-graft-poly(ethylene glycol) blend membranes formed in different coagulation media. Journal of Membrane Science, 2017, 524: 235–244CrossRefGoogle Scholar
  16. 16.
    Farahani M H, Rabiee H, Vatanpour V, Borghei S M. Fouling reduction of emulsion polyvinylchloride ultrafiltration membranes blended by PEG: The effect of additive concentration and coagulation bath temperature. Desalination and Water Treatment, 2015, 57(26): 11931–11944CrossRefGoogle Scholar
  17. 17.
    Liu L, Zhao C, Yang F. TiO2 and polyvinyl alcohol(PVA) coated polyester filter in bioreactor for wastewater treatment. Water Research, 2012, 46(6): 1969–1978CrossRefGoogle Scholar
  18. 18.
    Liu B, Chen C, Zhang W, Crittenden J, Chen Y. Low-cost antifouling PVC ultrafiltration membrane fabrication with Pluronic F 127: Effect of additiveson properties and performance. Desalination, 2012, 307(49): 26–33CrossRefGoogle Scholar
  19. 19.
    Huang L, Song Z, Zhi W, Wu J, Wang J, Wang S. In situ immobilization of silver nanoparticles for improving permeability, antifouling and anti-bacterial properties of ultrafiltration membrane. Journal of Membrane Science, 2015, 499: 269–281CrossRefGoogle Scholar
  20. 20.
    Boributh S, Chanachai A, Jiraratananon R. Modification of PVDF membrane by chitosan solution for reducing protein fouling. Journal of Membrane Science, 2009, 342(1): 97–104CrossRefGoogle Scholar
  21. 21.
    Yue W W, Li H J, Xiang T, Qin H, Sun S D, Zhao C S. Grafting of zwitterion from polysulfone membrane via surface-initiated ATRP with enhanced antifouling property and biocompatibility. Journal of Membrane Science, 2013, 446(11): 79–91CrossRefGoogle Scholar
  22. 22.
    Li Y, Zhang H, Zhang H, Cao J, Xu W, Li X. Hydrophilic porous poly(sulfone) membranes modified by UV-initiated polymerization for vanadium flow battery application. Journal of Membrane Science, 2014, 454(454): 478–487CrossRefGoogle Scholar
  23. 23.
    Eren E, Sarihan A, Eren B, Gumus H, Kocak F O. Preparation, characterization and performance enhancement of polysulfone ultrafiltration membrane using PBI as hydrophilic modifier. Journal of Membrane Science, 2015, 475(475): 1–8CrossRefGoogle Scholar
  24. 24.
    Su Y, Sun M, Wang L, Jiang Z. Ion-pair formation and ion-specific flux of a weak polyelectrolyte membrane. Journal of Physical Chemistry B, 2009, 113(28): 9454–9460CrossRefGoogle Scholar
  25. 25.
    Belfer S, Fainshtain R, Purinson Y, Gilron J, Nystrom M, Manttari M. Modification of NF membrane properties by in situ redox initiated graftpolymerization with hydrophilic monomers. Journal of Membrane Science, 2004, 239(1): 55–64CrossRefGoogle Scholar
  26. 26.
    Steen ML, Hymas L, Havey E D, Capps N E, Castner D G, Fisher E R. Low temperature plasma treatment of asymmetric polysulfone membranes forpermanent hydrophilic surface modification. Journal of Membrane Science, 2001, 188(1): 97–114CrossRefGoogle Scholar
  27. 27.
    Yu H, Cao Y, Kang G, Liu J, Li M, Yuan Q. Enhancing antifouling property of polysulfone ultrafiltration membrane by grafting zwitter ionic copolymer via UV-initiated polymerization. Journal of Membrane Science, 2009, 342(1-2): 6–13CrossRefGoogle Scholar
  28. 28.
    Loh C H, Wang R. Insight into the role of amphiphilic pluronic block copolymer as pore-forming additive in PVDF membrane formation. Journal of Membrane Science, 2013, 446(11): 492–503CrossRefGoogle Scholar
  29. 29.
    Zhou Z, Rajabzadeh S, Shaikh A R, Kakihana Y, Ma W, Matsuyama H. Effect of surface properties on antifouling performance of poly(vinyl chloride-co-poly(ethylene glycol)methyl ether methacrylate)/PVC blend membrane. Journal of Membrane Science, 2016, 514: 537–546CrossRefGoogle Scholar
  30. 30.
    Ma W, Rajabzadeh S, Shaikh A R, Kakihana Y, Sun Y, Matsuyama H. Effect of type of poly(ethylene glycol)(PEG) based amphiphilic copolymer on antifouling properties of copolymer/poly(vinylidene fluoride)(PVDF) blend membranes. Journal of Membrane Science, 2016, 514: 429–439CrossRefGoogle Scholar
  31. 31.
    Rabiee H, Shahabadi S, Mokhtare A, Rabiei H, Alvandifar N. Enhancement in permeation and antifouling properties of PVC ultrafiltration membranes with addition of hydrophilic surfactant additives: Tween-20 and Tween-80. Journal of Environmental Chemical Engineering, 2016, 4(4): 4050–4061CrossRefGoogle Scholar
  32. 32.
    Rabiee H, Farahani M H D A, Vatanpour V. Preparation and characterization of emulsion poly(vinyl chloride)(EPVC)/TiO2 nanocomposite ultrafiltration membrane. Journal of Membrane Science, 2014, 472(4): 185–193CrossRefGoogle Scholar
  33. 33.
    Rabiee H, Vatanpour V, Farahani M H D A, Zarrabi H. Improvement in flux and antifouling properties of PVC ultrafiltra-tion membranes by incorporation of zinc oxide(ZnO) nanoparticles. Separation and Purification Technology, 2015, 156: 299–310CrossRefGoogle Scholar
  34. 34.
    Liu Z X, Mi Z M, Chen C H, Zhou H W, Zhao X G, Wang D M. Preparation of hydrophilic and antifouling polysulfone ultrafiltration membrane derived from phenolphthalin by copolymerization method. Applied Surface Science, 2016, 401: 69–78CrossRefGoogle Scholar
  35. 35.
    Ravey M, Waterman J, Shorr L, Kramer M. Vinyl chloridepropylene copolymerization. Journal of Polymer Science Polymer Chemistry Edition, 1976, 14(7): 1609–1616CrossRefGoogle Scholar
  36. 36.
    Schaefer J. Random monomer distributions in copolymers. Copolymerizations of ethylene-vinyl chloride and ethylene-vinyl acetate. Journal of Physical Chemistry, 1966, 70(6): 1975–1985Google Scholar
  37. 37.
    Du M, Weng Z X, Shan G R, Huang Z M, Pan Z R. Study on suspension copolymerization rate of vinyl chloride/N-phenylmaleimide. Journal of Applied Polymer Science, 1999, 73(13): 2649–2656CrossRefGoogle Scholar
  38. 38.
    Wang J S, Matyjaszewski K. Controlled/“living” radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. Macromolecules, 1995, 117(20): 127–134Google Scholar
  39. 39.
    Fang L F, Wang N C, Zhou M Y, Zhu B K, Zhu L P, John A E. Poly(N,N-dimethylaminoethyl methacrylate) grafted poly(vinyl chloride) s synthesized via ATRP process and their membranes for dye separation. Chinese Journal of Polymer Science, 2015, 33(11): 1491–1502CrossRefGoogle Scholar
  40. 40.
    Singh S, Khulbe K, Matsuura T, Ramamurthy P. Membrane characterization by solute transport and atomic force microscopy. Journal of Membrane Science, 1998, 142(1): 111–127CrossRefGoogle Scholar
  41. 41.
    Mochizuki S, Zydney A L. Theoretical analysis of pore size distribution effects on membrane transport. Journal of Membrane Science, 1993, 82(3): 211–227CrossRefGoogle Scholar
  42. 42.
    Domenech-Carbo M T, Aura-Castro E. Evaluation of the phase inversion process as an application method for synthetic polymers in conservation work. Studies in Conservation, 1999, 44(1): 19–28Google Scholar
  43. 43.
    Hester J F, Banerjee P, Mayes A M. Preparation of protein-resistant surfaces on poly(vinylidene fluoride) membranes via surface segregation. Macromolecules, 2010, 32(5): 1643–1650CrossRefGoogle Scholar
  44. 44.
    Asatekin A, Kang S, Elimelech M, Mayes A M. Anti-fouling ultrafiltration membranes containing polyacrylonitrile-graft-poly(ethylene oxide) comb copolymer additives. Journal of Membrane Science, 2007, 298(1-2): 136–146CrossRefGoogle Scholar
  45. 45.
    Taniguchi M, Pieracci J P, Belfort G. Effect of undulations on surface energy: A quantitative assessment. Langmuir, 2001, 17(14): 4312–4315CrossRefGoogle Scholar
  46. 46.
    Burns D B, Zydney A L. Buffer effects on the zeta potential of ultrafiltration membranes. Journal of Membrane Science, 2000, 172(1): 39–48CrossRefGoogle Scholar
  47. 47.
    Gao J, Sun S P, Zhu W P, Chung T S. Chelating polymer modified P84 nanofiltration(NF) hollow fiber membranes for high efficient heavy metal removal. Water Research, 2014, 63(7): 252–261CrossRefGoogle Scholar
  48. 48.
    Konradi R, Rühe J. Interaction of poly(methacrylic acid) brushes with metal ions: An infrared investigation. Macromolecules, 2004, 37(18): 4345–4354CrossRefGoogle Scholar
  49. 49.
    Fields S. Taking the lead and copper rule to task. Environmental Health Perspectives, 2006, 114(114): A276CrossRefGoogle Scholar
  50. 50.
    Hsieh S H, Horng J J, Tsai C K. Growth of carbon nanotube on micro-sized Al2O3 particle and its application to adsorption of metal ions. Journal of Materials Research, 2006, 21(5): 1269–1273CrossRefGoogle Scholar
  51. 51.
    Cui L M, Wang Y G, Gao L, Hu L H, Yan L G, Wei Q, Du B. EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: Adsorption mechanism and separation property. Chemical Engineering Journal, 2015, 281: 1–10CrossRefGoogle Scholar
  52. 52.
    Wang C C, Gea H, Zhao Y Y, Liu S S, Zou Y, Zhang WB. Study on the adsorption of Cu(II) by folic acid functionalized magnetic graphene oxide. Journal of Magnetism and Magnetic Materials, 2017, 423(1): 421–435CrossRefGoogle Scholar
  53. 53.
    Yan H, Yang L, Yang Z, Yang H, Li A, Cheng R. Preparation of chitosan/poly(acrylic acid) magnetic composite microspheres and applications in the removal of Copper(II) ions from aqueous solutions. Journal of Hazardous Materials, 2012, 229–230: 371–380CrossRefGoogle Scholar
  54. 54.
    Monier M, Ayad D M, Wei Y, Sarhan A A. Preparation and characterization of magnetic chelating resin based on chitosan for adsorption of Cu(II) ions, Co(II) ions, and Ni(II) ions. Reactive & Functional Polymers, 2010, 70(4): 257–266CrossRefGoogle Scholar
  55. 55.
    Guptaa V K, Agarwal S, Bharti A K, Sadegh H. Adsorption mechanism of functionalized multi-walled carbon nanotubes for advanced Cu(II) removal. Journal of Molecular Liquids, 2017, 230(3): 667–673CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Nachuan Wang
    • 1
  • Jun Wang
    • 1
  • Peng Zhang
    • 2
  • Wenbin Wang
    • 1
  • Chuangchao Sun
    • 1
  • Ling Xiao
    • 2
  • Chen Chen
    • 2
  • Bin Zhao
    • 2
  • Qingran Kong
    • 1
  • Baoku Zhu
    • 1
  1. 1.Department of Polymer Science and EngineeringZhejiang UniversityHangzhouChina
  2. 2.Hainan Litree Purifying Technology Co., Ltd.HaikouChina

Personalised recommendations