Advertisement

Frontiers of Chemical Science and Engineering

, Volume 12, Issue 1, pp 113–123 | Cite as

A mini review on strategies for heterogenization of rhodium-based hydroformylation catalysts

Review Article

Abstract

Hydroformylation has been widely used in industry to manufacture high value-added aldehydes and alcohols, and is considered as the largest homogenously catalyzed process in industry. However, this process often suffers from complicated operation and the difficulty in catalyst recycling. It is highly desirable to develop a heterogeneous catalyst that enables the catalyst recovery without sacrificing the activity and selectivity. There are two strategies to afford such a catalyst for the hydrofromylation: immobilized catalysts on solid support and porous organic ligand (POL)-supported catalysts. In the latter, high concentration of phosphine ligands in the catalyst framework is favorable for the high dispersion of rhodium species and the formation of Rh-P multiple bonds, which endow the catalysts with high activity and stability respectively. Besides, the high linear regioselectivity could be achieved through the copolymerization of vinyl functionalized bidentate ligand (vinyl biphephos) and monodentate ligand (3vPPh3) into the catalyst framework. The newly-emerging POL-supported catalysts have great perspectives in the industrial hydroformylation.

Keywords

hydroformylation porous organic ligand (POL)-supported catalysts heterogeneous catalysis high stability immobilization catalysts 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21273227 and 21403258) and the Strategic Priority Research Program of the Chinese Academy of Science (Grant Nos XDB17020400).

References

  1. 1.
    van Leeuwen P W N M, Claver C. Rhodium Catalyzed Hydroformylation. Berlin: Springer-Heidelberg, 2008, Chapter 1: 1–13Google Scholar
  2. 2.
    Franke R, Selent D, Börner A. Applied hydroformylation. Chemical Reviews, 2012, 112(11): 5675–5732CrossRefPubMedCentralGoogle Scholar
  3. 3.
    Hebrard F, Kalck P. Cobalt-catalyzed hydroformylation of alkenes: Generation and recycling of the carbonyl species, and catalytic cycle. Chemical Reviews, 2009, 109(9): 4272–4282CrossRefPubMedCentralGoogle Scholar
  4. 4.
    Neves  C B, Calvete M J F, Pinhoe Melo T M V D, Pereira M M. Immobilized catalysts for hydroformylation reactions: A versatile tool for aldehyde synthesis. European Journal of Organic Chemistry, 2012, 2012: 6309–6320CrossRefGoogle Scholar
  5. 5.
    Fleischer I, Wu L, Profir I, Jackstell R, Franke R, Beller M. Towards the development of a selective ruthenium-catalyzed hydroformylation of olefins. Chemistry (Weinheim an der Bergstrasse, Germany), 2013, 19(32): 10589–10594Google Scholar
  6. 6.
    Fang X, Zhang M, Jackstell R, Beller M. Selective palladiumcatalyzed hydroformylation of alkynes to a,ß-unsaturated aldehydes. Angewandte Chemie International Edition, 2013, 52(17): 4645–4649CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Kubis C, Baumann W, Barsch E, Selent D, Sawall M, Ludwig R, Neymeyr K, Hess D, Franke R, Börner A. Investigation into the equilibrium of iridium catalysts for the hydroformylation of olefins by combining in situ high-pressure FTIR and NMR spectroscopy. ACS Catalysis, 2014, 4(7): 2097–2108CrossRefGoogle Scholar
  8. 8.
    Janssen M, Wilting J, Müller C, Vogt D. Continuous rhodium-catalyzed hydroformylation of 1-octene with polyhedral oligomeric silsesquioxanes (POSS) enlarged triphenylphosphine. Angewandte Chemie International Edition, 2010, 49(42): 7738–7741CrossRefPubMedCentralGoogle Scholar
  9. 9.
    Fuchs D, Rousseau G, Diab L, Gellrich U, Breit B. Tandem rhodium-catalyzed hydroformylation-hydrogenation of alkenes by Employing a cooperative ligand system. Angewandte Chemie International Edition, 2012, 51(9): 2178–2182CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Klähn M, Garland M V. On the mechanism of the catalytic binuclear elimination reaction in hydroformylation systems. ACS Catalysis, 2015, 5(4): 2301–2316CrossRefGoogle Scholar
  11. 11.
    Cornils B, Herrmann W A, Rasch M. Otto Roelen, pioneer in industrial homogeneous catalysis. Angewandte Chemie International Edition in English, 1994, 33(21): 2144–2163CrossRefGoogle Scholar
  12. 12.
    Roelen O. DE Patent, 849548, 1938Google Scholar
  13. 13.
    Roelen O. US Patent, 2327066, 1943Google Scholar
  14. 14.
    Haumann M, Jakuttis M, Franke R, Schönweiz A, Wasserscheid P. Continuous gas-phase hydroformylation of a highly diluted technical C4 feed using supported ionic liquid phase catalysts. ChemCatChem, 2011, 3(11): 1822–1827CrossRefGoogle Scholar
  15. 15.
    Jacobs I, de Bruin B, Reek J N H. Comparison of the full catalytic cycle of hydroformylation mediated by mono-and bis-ligated triphenylphosphine-rhodium complexes by using DFT calculations. ChemCatChem, 2015, 7(11): 1708–1718CrossRefGoogle Scholar
  16. 16.
    Brunsch Y, Behr A. Temperature-controlled catalyst recycling in homogeneous transition-metal catalysis: Minimization of catalyst leaching. Angewandte Chemie International Edition, 2013, 52(5): 1586–1589CrossRefGoogle Scholar
  17. 17.
    Gellrich U, Seiche W, Keller M, Breit B. Mechanistic insights into a supramolecular self-assembling catalyst system: Evidence for hydrogen bonding during rhodium-catalyzed hydroformylation. Angewandte Chemie International Edition, 2012, 51(44): 11033–11038CrossRefGoogle Scholar
  18. 18.
    Wu L, Fleischer I, Jackstell R, Profir I, Franke R, Beller M. Ruthenium-catalyzed hydroformylation/reduction of olefins to alcohols: Extending the scope to internal alkenes. Journal of the American Chemical Society, 2013, 135(38): 14306–14312CrossRefGoogle Scholar
  19. 19.
    Fuchs D, Rousseau G, Diab L, Gellrich U, Breit B. Tandem rhodium-catalyzed hydroformylation-hydrogenation of alkenes by employing a cooperative ligand system. Angewandte Chemie International Edition, 2012, 51(9): 2178–2182CrossRefPubMedCentralGoogle Scholar
  20. 20.
    Neubert P, Fuchs S, Behr A. Hydroformylation of piperylene and efficient catalyst recycling in propylene carbonate. Green Chemistry, 2015, 17(7): 4045–4052CrossRefGoogle Scholar
  21. 21.
    Dydio P, Detz R J, de Bruin B, Reek J N H. Beyond claßsical reactivity patterns: Hydroformylation of vinyl and allyl arenes to valuable ß-and γ-aldehyde intermediates using supramolecular catalysis. Journal of the American Chemical Society, 2014, 136(23): 8418–8429CrossRefGoogle Scholar
  22. 22.
    Takahashi K, Yamashita M, Nozaki K. Tandem hydroformylation/hydrogenation of alkenes to normal alcohols using Rh/Ru dual catalyst or Ru single component catalyst. Journal of the American Chemical Society, 2012, 134(45): 18746–18757CrossRefGoogle Scholar
  23. 23.
    Dong K, Fang X, Jackstell R, Beller M. A novel rhodium-catalyzed domino-hydroformylation-reaction for the synthesis of sulphonamides. Chemical Communications, 2015, 51(24): 5059–5062CrossRefGoogle Scholar
  24. 24.
    Fleischer I, Dyballa K M, Jennerjahn R, Jackstell R, Franke R, Spannenberg A, Beller M. From olefins to alcohols: Efficient and regioselective ruthenium-catalyzed domino hydroformylation/reduction sequence. Angewandte Chemie International Edition, 2013, 52(10): 2949–2953CrossRefGoogle Scholar
  25. 25.
    Takahashi K, Yamashita M, Tanaka Y, Nozaki K. Ruthenium/C5Me5/bisphosphine-or bisphosphite-based catalysts for normalselective hydroformylation. Angewandte Chemie International Edition, 2012, 51(18): 4383–4387CrossRefGoogle Scholar
  26. 26.
    Dydio P, Dzik W I, Lutz M, de Bruin B, Reek J N H. Remote supramolecular control of catalyst selectivity in the hydroformylation of alkenes. Angewandte Chemie International Edition, 2011, 50(2): 396–400CrossRefGoogle Scholar
  27. 27.
    Jia X, Wang Z, Xia C, Ding K. Spiroketal-based phosphorus ligands for highly regioselective hydroformylation of terminal and internal olefins. Chemistry (Weinheim an der Bergstrasse, Germany), 2012, 18(48): 15288–15295Google Scholar
  28. 28.
    Agbossou F, Carpentier J F, Mortreux A. Asymmetric hydroformylation. Chemical Reviews, 1995, 95(7): 2485–2506CrossRefGoogle Scholar
  29. 29.
    Pospech J, Fleischer I, Franke R, Buchholz S, Beller M. Alternative metals for homogeneous catalyzed hydroformylation reactions. Angewandte Chemie International Edition, 2013, 52(10): 2852–2872CrossRefGoogle Scholar
  30. 30.
    Brown C K, Wilkinson G. Homogeneous hydroformylation of alkenes with hydridocarbonyltris-(triphenylphosphine) rhodium (I) as catalyst. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1970, 2753–2764Google Scholar
  31. 31.
    Evans D, Osborn J A, Wilkinson G. Hydroformylation of alkenes by use of rhodium complex catalysts. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1968, 3133–3142Google Scholar
  32. 32.
    Herrmann W A, Schmid R, Kohlpaintner C W, Priermeier T. Structure and metal coordination of the diphosphine 2,2′-bis ((diphenylphosphino)methyl)-1,1′-binaphthyl (NAPHOS). Organometallics, 1995, 14(4): 1961–1968CrossRefGoogle Scholar
  33. 33.
    Casey C P, Paulsen E L, Beuttenmueller E W, Proft B R, Petrovich L M, Matter B A, Powell D R. Electron withdrawing substituents on equatorial and apical phosphines have opposite effects on the regioselectivity of rhodium catalyzed hydroformylation. Journal of the American Chemical Society, 1997, 119(49): 11817–11825CrossRefGoogle Scholar
  34. 34.
    Casey C P, Whiteker G T, Melville M G, Petrovich L M, Gavney J A Jr, Powell D R. Diphosphines with natural bite angles near 120° increase selectivity for n-aldehyde formation in rhodium-catalyzed hydroformylation. Journal of the American Chemical Society, 1992, 114(14): 5535–5543CrossRefGoogle Scholar
  35. 35.
    Herrmann W A, Kohlpaintner C W, Herdtweck E, Kiprof P. Structure and metal coordination of the diphosphane 2,2′-bis ((diphenylphosphino) methyl)-1,1′-biphenyl (“BISBI”). Inorganic Chemistry, 1991, 30(22): 4271–4275CrossRefGoogle Scholar
  36. 36.
    Billig E, Abatjoglou A G, Bryant D R. (a) EU Patent, 213639, 1987; (b) US Patent, 4748261, 1988Google Scholar
  37. 37.
    Behr A, Obst D, Schulte C, Schosser T. Highly selective tandem isomerization-hydroformylation reaction of trans-4-octene to nnonanal with rhodium-BIPHEPHOS catalysis. Journal of Molecular Catalysis A Chemical, 2003, 206(1-2): 179–184CrossRefGoogle Scholar
  38. 38.
    Vogl C, Paetzold E, Fischer C, Kragl U. Highly selective hydroformylation of internal and terminal olefins to terminal aldehydes using a rhodium-BIPHEPHOS-catalyst system. Journal of Molecular Catalysis A Chemical, 2005, 232(1-2): 41–44CrossRefGoogle Scholar
  39. 39.
    Kiedorf G, Hoang D M, Müller A, Jörke A, Markert J, Arellano-Garcia H, Seidel-Morgenstern A, Hamel C. Kinetics of 1-dodecene hydroformylation in a thermomorphic solvent system using a rhodium-biphephos catalyst. Chemical Engineering Science, 2014, 115: 31–48CrossRefGoogle Scholar
  40. 40.
    Cuny G D, Buchwald S L. Practical, high-yield, regioselective, rhodium-catalyzed hydroformylation of functionalized alphaolefins. Journal of the American Chemical Society, 1993, 115(5): 2066–2068CrossRefGoogle Scholar
  41. 41.
    Behr A, Obst D, Turkowski B. Isomerizing hydroformylation of trans-4-octene to n-nonanal in multiphase systems: Acceleration effect of propylene carbonate. Journal of Molecular Catalysis A Chemical, 2005, 226(2): 215–219CrossRefGoogle Scholar
  42. 42.
    Moasser B, Gladfelter W L, Roe D C. Mechanistic aspects of a highly regioselective catalytic alkene hydroformylation using a rhodium chelating bis(phosphite) complex. Organometallics, 1995, 14(8): 3832–3838CrossRefGoogle Scholar
  43. 43.
    Sakai N, Mano S, Nozaki K, Takaya H. Highly enantioselective hydroformylation of olefins catalyzed by new phosphine phosphite-rhodium (I) complexes. Journal of the American Chemical Society, 1993, 115(15): 7033–7034CrossRefGoogle Scholar
  44. 44.
    Carbó J J, Maseras F, Bo C, van Leeuwen P W N M. Unraveling the origin of regioselectivity in rhodium diphosphine catalyzed hydroformylation. A DFT QM/MM study. Journal of the American Chemical Society, 2001, 123(31): 7630–7637CrossRefPubMedCentralGoogle Scholar
  45. 45.
    Kranenburg M, van der Burgt Y E M, Kamer P C J, van Leeuwen P W N M, Goubitz K, Fraanje J. New diphosphine ligands based on heterocyclic aromatics inducing very high regioselectivity in rhodium-catalyzed hydroformylation: Effect of the bite angle. Organometallics, 1995, 14(6): 3081–3089CrossRefGoogle Scholar
  46. 46.
    van der Veen L A, Boele M D K, Bregman F R, Kamer P C J, van Leeuwen P W N M, Goubitz K, Fraanje J, Schenk H, Bo C. Electronic effect on rhodium diphosphine catalyzed hydroformylation: The bite angle effect reconsidered. Journal of the American Chemical Society, 1998, 120(45): 11616–11626CrossRefGoogle Scholar
  47. 47.
    Hillebrand S, Bruckmann J, Krüger C, Haenel M W. Bidentate phosphines of heteroarenes: 9,9-dimethyl-4,5-bis(diphenylphosphino) xanthene. Tetrahedron Letters, 1995, 36(1): 75–78CrossRefGoogle Scholar
  48. 48.
    Klein H, Jackstell R, Wiese K D, Borgmann C, Beller M. Highly selective catalyst systems for the hydroformylation of internal olefins to linear aldehydes. Angewandte Chemie International Edition, 2001, 40(18): 3408–3411CrossRefPubMedCentralGoogle Scholar
  49. 49.
    Cai C, Yu S, Cao B, Zhang X. New tetraphosphorus ligands for Highly linear selective hydroformylation of allyl and vinyl derivatives. Chemistry (Weinheim an der Bergstrasse, Germany), 2012, 18(32): 9992–9998Google Scholar
  50. 50.
    Li S, Huang K, Zhang J, Wu W, Zhang X. Rhodium-catalyzed highly regioselective hydroaminomethylation of styrenes with tetraphosphorus ligands. Organic Letters, 2013, 15(12): 3078–3081CrossRefGoogle Scholar
  51. 51.
    Yu S, Chie Y, Guan Z, Zou Y, Li W, Zhang X. Highly regioselective hydroformylation of styrene and its derivatives catalyzed by Rh complex with tetraphosphorus ligands. Organic Letters, 2008, 11(1): 241–244CrossRefGoogle Scholar
  52. 52.
    Yu S, Chie Y, Guan Z, Zhang X. Highly regioselective isomerization-hydroformylation of internal olefins to linear aldehyde using Rh complexes with tetraphosphorus ligands. Organic Letters, 2008, 10(16): 3469–3472CrossRefGoogle Scholar
  53. 53.
    Hemminger O, Marteel A, Mason M R, Davies J A, Tadd A R, Abraham M A. Hydroformylation of 1-hexene in supercritical carbon dioxide using a heterogeneous rhodium catalyst. 3. Evaluation of solvent effects. Green Chemistry, 2002, 4(5): 507–512CrossRefGoogle Scholar
  54. 54.
    Janssen M, Wilting J, Müller C, Vogt D. Continuous Rhodiumcatalyzed hydroformylation of 1-octene with polyhedral oligomeric silsesquioxanes (POSS) enlarged triphenylphosphine. Angewandte Chemie International Edition, 2010, 49(42): 7738–7741CrossRefPubMedCentralGoogle Scholar
  55. 55.
    Kunene T E, Webb P B, Cole-Hamilton D J. Highly selective hydroformylation of long-chain alkenes in a supercritical fluid ionic liquid biphasic system. Green Chemistry, 2011, 13(6): 1476–1481CrossRefGoogle Scholar
  56. 56.
    Cole-Hamilton D J. Homogeneous catalysis—new approaches to catalyst separation, recovery, and recycling. Science, 2003, 299(5613): 1702–1706CrossRefGoogle Scholar
  57. 57.
    Zhou W, He D. A facile method for promoting activities of ordered mesoporous silica-anchored Rh-P complex catalysts in 1-octene hydroformylation. Green Chemistry, 2009, 11(8): 1146–1154CrossRefGoogle Scholar
  58. 58.
    Zhou W, He D. Anchoring RhCl(CO)(PPh3)2 to-PrPPh2 modified MCM-41 as effective catalyst for 1-octene hydroformylation. Catalysis Letters, 2009, 127(3-4): 437–443CrossRefGoogle Scholar
  59. 59.
    Zhou W, He D. Lengthening alkyl spacers to increase SBA-15-anchored Rh-P complex activities in 1-octene hydroformylation. Chemical Communications, 2008, 44(44): 5839–5841CrossRefGoogle Scholar
  60. 60.
    Marras F, Wang J, Coppens M O, Reek J N H. Ordered mesoporous materials as solid supports for rhodium-diphosphine catalysts with remarkable hydroformylation activity. Chemical Communications, 2010, 46(35): 6587–6589CrossRefGoogle Scholar
  61. 61.
    Marras F, Kluwer A M, Siekierzycka J R, Vozza A, Brouwer A M, Reek J N H. Phosphorus ligand imaging with two-photon fluorescence spectroscopy: Towards rational catalyst immobilization. Angewandte Chemie International Edition, 2010, 49(32): 5480–5484CrossRefGoogle Scholar
  62. 62.
    Bae J A, Song K C, Jeon J K, Ko Y S, Park Y K, Yim J H. Effect of pore structure of amine-functionalized mesoporous silica-supported rhodium catalysts on 1-octene hydroformylation. Microporous and Mesoporous Materials, 2009, 123(1-3): 289–297CrossRefGoogle Scholar
  63. 63.
    Abu-Reziq R, Alper H, Wang D, Post M. Metal supported on dendronized magnetic nanoparticles: Highly selective hydroformylation catalysts. Journal of the American Chemical Society, 2006, 128(15): 5279–5282CrossRefGoogle Scholar
  64. 64.
    Srivastava V K, Sharma S K, Shukla R S, Jasra R V. Rhodium metal complex and hydrotalcite based environmentally friendly catalyst system for the selective synthesis of C8-aldehydes from propylene. Industrial & Engineering Chemistry Research, 2008, 47(11): 3795–3803CrossRefGoogle Scholar
  65. 65.
    Sharma S K, Parikh P A, Jasra R V. Hydroformylation of alkenes using heterogeneous catalyst prepared by intercalation of HRh (CO)(TPPTS)3 complex in hydrotalcite. Journal of Molecular Catalysis A Chemical, 2010, 316(1-2): 153–162CrossRefGoogle Scholar
  66. 66.
    Jiang M, Ding Y, Yan L, Song X, Lin R. Rh catalysts supported on knitting aryl network polymers for the hydroformylation of higher olefins. Chinese Journal of Catalysis, 2014, 35(9): 1456–1464CrossRefGoogle Scholar
  67. 67.
    Wang T, Wang W, Lyu Y, Xiong K, Li C, Zhang H, Zhan Z, Jiang Z, Ding Y. Porous Rh/BINAP polymers as efficient heterogeneous catalysts for asymmetric hydroformylation of styrene: Enhanced enantioselectivity realized by flexible chiral nanopockets. Chinese Journal of Catalysis, 2017, 38(4): 691–698CrossRefGoogle Scholar
  68. 68.
    Nozaki K, Shibahara F, Hiyama T. Vapor-phase asymmetric hydroformylation. Chemistry Letters, 2000, 29(6): 694–695CrossRefGoogle Scholar
  69. 69.
    Shibahara F, Nozaki K, Matsuo T, Hiyama T. Asymmetric hydroformylation with highly crosslinked polystyrene-supported (R,S)-BINAPHOS-Rh(I) complexes: The effect of immobilization position. Bioorganic & Medicinal Chemistry Letters, 2002, 12(14): 1825–1827CrossRefGoogle Scholar
  70. 70.
    Shibahara F, Nozaki K, Hiyama T. Solvent-free asymmetric olefin hydroformylation catalyzed by highly cross-linked polystyrenesupported (R,S)-BINAPHOS-Rh(I) complex. Journal of the American Chemical Society, 2003, 125(28): 8555–8560CrossRefPubMedCentralGoogle Scholar
  71. 71.
    Kinoshita S, Shibahara F, Nozaki K. Comparison of two preparative methods: A polymer-supported catalyst by metalcomplexation with a polymeric ligand or by polymerization of a metal complex. Green Chemistry, 2005, 7: 256–258CrossRefGoogle Scholar
  72. 72.
    Makhubela B C E, Jardine A, Smith G S. Rh(I) complexes supported on a biopolymer as recyclable and selective hydroformylation catalysts. Green Chemistry, 2012, 14(2): 338–347CrossRefGoogle Scholar
  73. 73.
    Jana R, Tunge J A. A homogeneous, recyclable polymer support for Rh (I)-catalyzed CC bond formation. Journal of Organic Chemistry, 2011, 76(20): 8376–8385CrossRefPubMedCentralGoogle Scholar
  74. 74.
    Jana R, Tunge J A. A homogeneous, recyclable rhodium(I) catalyst for the hydroarylation of Michael acceptors. Organic Letters, 2009, 11(4): 971–974CrossRefPubMedCentralGoogle Scholar
  75. 75.
    Zhu H, Ding Y, Yin H, Yan L, Xiong J, Lu Y, Luo H, Lin L. Supported rhodium and supported aqueous-phase catalyst, and supported rhodium catalyst modified with water-soluble TPPTS ligands. Applied Catalysis A, General, 2003, 245(1): 111–117CrossRefGoogle Scholar
  76. 76.
    Zhu H J, Ding Y J, Yan L, Xiong J, Li X, Zhang L, Lin P, Huang S, Lin L. A novel family of catalysts comprising a supported metal and a supported aqueous-phase catalyst. Chinese Journal of Catalysis, 2003, 24: 81–82Google Scholar
  77. 77.
    Mukhopadhyay K, Chaudhari R V. Heterogenized HRh(CO) (PPh3)3 on zeolite Y using phosphotungstic acid as tethering agent: A novel hydroformylation catalyst. Journal of Catalysis, 2003, 213(1): 73–77CrossRefGoogle Scholar
  78. 78.
    Han D, Li X, Zhang H, Liu Z, Hu G, Li C. Asymmetric hydroformylation of olefins catalyzed by rhodium nanoparticles chirally stabilized with (R)-BINAP ligand. Journal of Molecular Catalysis A Chemical, 2008, 283(1-2): 15–22CrossRefGoogle Scholar
  79. 79.
    Han D, Li X, Zhang H, Liu Z, Li J, Li C. Heterogeneous asymmetric hydroformylation of olefins on chirally modified Rh/SiO2 catalysts. Journal of Catalysis, 2006, 243(2): 318–328CrossRefGoogle Scholar
  80. 80.
    Shylesh S, Hanna D, Mlinar A, Kong X, Reimer J A, Bell A. In situ formation of Wilkinson-type hydroformylation catalysts: Insights into the structure, stability, and kinetics of triphenylphosphine-and xantphos-modified Rh/SiO2. ACS Catalysis, 2013, 3(3): 348–357CrossRefGoogle Scholar
  81. 81.
    Yan L, Ding Y, Zhu H, Xiong J, Wang T, Pan Z, Lin L. Ligand modified real heterogeneous catalysts for fixed-bed hydroformylation of propylene. Journal of Molecular Catalysis A Chemical, 2005, 234(1-2): 1–7CrossRefGoogle Scholar
  82. 82.
    Yan L, Ding Y, Zhu H, Yin H, Jiao G, Zhao D, Lin L. Continuous fixed-bed gas-phase hydroformylation over PPh3-modified mesostructured cellular foam-supported Rh catalyst. Chinese Journal of Catalysis, 2006, 27(1): 1–3CrossRefGoogle Scholar
  83. 83.
    Yan L, Ding Y, Lin L, Zhu H, Yin H, Li X, Lu Y. In situ formation of HRh(CO)2(PPh3)2 active species on the surface of a SBA-15 supported heterogeneous catalyst and the effect of support pore size on the hydroformylation of propene. Journal of Molecular Catalysis A Chemical, 2009, 300(1-2): 116–120CrossRefGoogle Scholar
  84. 84.
    Yan L, Ding Y, Liu J, Zhu H, Lin L. Influence of phosphine concentration on propylene hydroformylation over the PPh3-Rh/SiO2 catalyst. Chinese Journal of Catalysis, 2011, 32(1-2): 31–35CrossRefGoogle Scholar
  85. 85.
    Li X, Ding Y, Jiao G, Li J, Yan L, Zhu H. Hydroformylation of internal olefins to linear aldehydes over a phosphite ligand modified Rh/SiO2 catalyst. Journal of Natural Gas Chemistry, 2008, 17: 351–354CrossRefGoogle Scholar
  86. 86.
    Li X, Ding Y, Jiao G, Li J, Yan L, Zhu H. Phosphorus ligand modified Rh/SiO2 catalyst for hydroformylation of methyl-3-pentenoate. Chinese Journal of Catalysis, 2008, 29(12): 1193–1195CrossRefGoogle Scholar
  87. 87.
    Li X, Ding Y, Jiao G, Li J, Yan L, Zhu H. Phosphite ligand modified supported rhodium catalyst for hydroformylation of internal olefins to linear aldehydes. Chemical Research in Chinese Universities, 2009, 25: 738–739Google Scholar
  88. 88.
    Li X, Ding Y, Jiao G, Li J, Lin R, Gong L, Yan L, Zhu H. A new concept of tethered ligand-modified Rh/SiO2 catalyst for hydroformylation with high stability. Applied Catalysis A, General, 2009, 353(2): 266–270CrossRefGoogle Scholar
  89. 89.
    Liu J, Yan L, Ding Y, Jiang M, Dong W, Song X, Liu T, Zhu H. Promoting effect of Al on tethered ligand-modified Rh/SiO2 catalysts for ethylene hydroformylation. Applied Catalysis A, General, 2015, 492: 127–132CrossRefGoogle Scholar
  90. 90.
    Liu J, Yan L, Jiang M, Li C, Ding Y. Effect of lengthening alkyl spacer on hydroformylation performance of tethered-phosphine modified Rh/SiO2 catalyst. Chinese Journal of Catalysis, 2016, 37(2): 268–272CrossRefGoogle Scholar
  91. 91.
    Arya P, Panda G, Rao N V, Alper H, Bourque S C, Manzer L E. Solid-phase catalysis: A biomimetic approach toward ligands on dendritic arms to explore recyclable hydroformylation reactions. Journal of the American Chemical Society, 2001, 123(12): 2889–2890CrossRefGoogle Scholar
  92. 92.
    Adint T T, Landis C R. Immobilized bisdiazaphospholane catalysts for asymmetric hydroformylation. Journal of the American Chemical Society, 2014, 136(22): 7943–7953CrossRefGoogle Scholar
  93. 93.
    Nowotny M, Maschmeyer T, Johnson B F G, Lahuerta P, Thomas J M, Davies J E. Heterogeneous dinuclear rhodium(II) hydroformylation catalysts-performance evaluation and silsesquioxanebased chemical modeling. Angewandte Chemie International Edition, 2001, 40(5): 955–958CrossRefGoogle Scholar
  94. 94.
    Sun Q, Dai Z, Liu X, Sheng N, Deng F, Meng X, Xiao F. Highly efficient heterogeneous hydroformylation over Rh-metalated porous organic polymers: Synergistic effect of high ligand concentration and flexible framework. Journal of the American Chemical Society, 2015, 137(15): 5204–5209CrossRefGoogle Scholar
  95. 95.
    Sun Q, Jiang M, Shen Z, Jin Y, Pan S, Wang L, Meng X, Chen W, Ding Y, Li J, Xiao F. Porous organic ligands (POLs) for synthesizing highly efficient heterogeneous catalysts. Chemical Communications, 2014, 50(80): 11844–11847CrossRefGoogle Scholar
  96. 96.
    Zhou Y B, Li C Y, Lin M, Ding Y, Zhan Z. A polymer-bound monodentate-P-ligated palladium complex as a recyclable catalyst for the Suzuki-Miyaura coupling reaction of aryl chlorides. Advanced Synthesis & Catalysis, 2015, 357(11): 2503–2508CrossRefGoogle Scholar
  97. 97.
    Jiang M, Yan L, Ding Y, Sun Q, Liu J, Zhu H, Lin R, Xiao F, Jiang Z, Liu J. Ultrastable 3V-PPh3 polymers supported single Rh sites for fixed-bed hydroformylation of olefins. Journal of Molecular Catalysis A Chemical, 2015, 404: 211–217CrossRefGoogle Scholar
  98. 98.
    Jiang M, Yan L, Sun X, Lin R, Song X, Jiang Z, Ding Y. Effect of different synthetic routes on the performance of propylene hydroformylation over 3V-PPh3 polymer supported Rh catalysts. Reaction Kinetics, Mechanisms and Catalysis, 2015, 116(1): 223–234CrossRefGoogle Scholar
  99. 99.
    Li C, Xiong K, Yan L, Jiang M, Song X, Wang T, Chen X, Zhan Z, Ding Y. Designing highly efficient Rh/CPOL-bp&PPh3 heterogenous catalysts for hydroformylation of internal and terminal olefins. Catalysis Science & Technology, 2016, 6(7): 2143–2149CrossRefGoogle Scholar
  100. 100.
    Kohlpaintner C W, Fischer R W, Cornils B. Aqueous biphasic catalysis: Ruhrchemie/Rhône-Poulenc oxo process. Applied Catalysis A, General, 2001, 221(1-2): 219–225CrossRefGoogle Scholar
  101. 101.
    Li C, Yan L, Lu L, Xiong K, Wang W, Jiang M, Liu J, Song X, Zhan Z, Jiang Z, Ding Y. Single atom dispersed Rh-biphephos & PPh3@ porous organic copolymers: Highly efficient catalysts for continuous fixed-bed hydroformylation of propene. Green Chemistry, 2016, 18(10): 2995–3005CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina
  2. 2.State Key Laboratory of Catalysis, Dalian Institute of Chemical PhysicsChinese Academy of SciencesDalianChina

Personalised recommendations