Skip to main content

Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte with different perovskite structured cathode materials

Abstract

A comparative analysis of perovskite structured cathode materials, La0.65Sr0.35MnO3 (LSM), La0.8Sr0.2CoO3 (LSC), La0.6Sr0.4FeO3 (LSF) and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF), was performed for a ceramic-carbonate nanocomposite fuel cell using composite electrolyte consisting of Gd0.1Ce0.9O1.95 (GDC) and a eutectic mixture of Na2CO3 and Li2CO3. The compatibility of these nanocomposite electrode powder materials was investigated under air, CO2 and air/CO2 atmospheres at 550 °C. Microscopy measurements together with energy dispersive X-ray spectroscopy (EDS) elementary analysis revealed few spots with higher counts of manganese relative to lanthanum and strontium under pure CO2 atmosphere. Furthermore, electrochemical impedance (EIS) analysis showed that LSC had the lowest resistance to oxygen reduction reaction (ORR) (14.12 Ω∙cm2) followed by LSF (15.23 Ω∙cm2), LSCF (19.38 Ω∙cm2) and LSM (>300 Ω∙cm2). In addition, low frequency EIS measurements (down to 50 μHz) revealed two additional semi-circles at frequencies around 1 Hz. These semicircles can yield additional information about electrochemical reactions in the device. Finally, a fuel cell was fabricated using GDC/NLC nanocomposite electrolyte and its composite with NiO and LSCF as anode and cathode, respectively. The cell produced an excellent power density of 1.06 W/cm2 at 550 °C under fuel cell conditions.

This is a preview of subscription content, access via your institution.

References

  1. Rajesh S, Maccedo D A, Nascimento R M. Materials and processes for energy: Communicating current research and technological developments. Formatex Research Center, 2013, 485–494

    Google Scholar 

  2. Park S Y, Ahn J H, Jeong C W, Na C W, Song R H, Lee J H. Ni-YSZ-supported tubular solid oxide fuel cells with GDC interlayer between YSZ electrolyte and LSCF cathode. International Journal of Hydrogen Energy, 2014, 39(24): 12894–12903

    CAS  Article  Google Scholar 

  3. Kakac S, Pramuanjaroenkij A, Zhou X Y. A review of numerical modelling of solid oxide fuel cells. International Journal of Hydrogen Energy, 2007, 32(7): 761–786

    CAS  Article  Google Scholar 

  4. Ho T X, Kosinski P, Hoffmann A C, Vik A. Effects of heat sources on the performance of a planar solid oxide fuel cell. International Journal of Hydrogen Energy, 2010, 35(9): 4276–4284

    CAS  Article  Google Scholar 

  5. Asghar M I, Lund P D. Improving catalyst stability in nanostructured solar and fuel cells. Catalysis Today, 2015, 259: 259–265

    Article  Google Scholar 

  6. Yokokawa H, Tu H, Iwanschitz B, Mai A. Fundamental mechanisms limiting solid oxide fuel cell durability. Journal of Power Sources, 2008, 182(2): 400–412

    CAS  Article  Google Scholar 

  7. O’Hayre R, Cha SW, Colella W, Prinz F B. Fuel cell fundamentals. New Jersey: Wiley, 2006, 245–246

    Google Scholar 

  8. Patakangas J, Ma Y, Jing Y, Lund P. Review and analysis of characterization methods and ionic conductivities for low-temperature fuel cells (LT-SOFC). Journal of Power Sources, 2014, 263: 315–331

    CAS  Article  Google Scholar 

  9. Fergus J W. Electrolytes for solid oxide fuel cells. Journal of Power Sources, 2006, 162(1): 30–40

    CAS  Article  Google Scholar 

  10. Ivers-Tiffee E, Weber A, Herbstritt D. Materials and technologies for SOFC-components. Journal of the European Ceramic Society, 2001, 21(10-11): 1805–1811

    CAS  Article  Google Scholar 

  11. Kilner J A, Burriel M. Materials for intermediate-temperature solidoxide fuel cells. Annual Review of Materials Research, 2014, 44(1): 365–393

    CAS  Article  Google Scholar 

  12. Fergus J, Hui R, Li X, Wilkinson D P, Zhang J. Solid Oxide Fuel Cells: Material Properties and Performance. Florida: Chemical Rubber Company Press, 2009, 33–37

    Google Scholar 

  13. Lee J G, Park J H, Shul Y G. Tailoring gadolinium-doped ceriabased solid oxide fuel cells to achieve 2 W·cm‒2 at 550 °C. Nature Communications, 2014, 5: 4045

    CAS  Google Scholar 

  14. Pereira J R S, Rajesh S, Figueiredo F M L, Marques F M B. Composite electrodes for ceria-carbonate intermediate temperature electrolytes. Electrochimica Acta, 2013, 90: 71–79

    CAS  Article  Google Scholar 

  15. Rajesh S, Pereira J R S, Figueiredo F M L, Marques F M B. Performance of carbonate—LaCoO3 and La0.8Sr0.2Co0.2Fe0.8O3-composite cathodes under carbon dioxide. Electrochimica Acta, 2014, 125: 435–442

    CAS  Article  Google Scholar 

  16. Loureiro F J A, Rajesh S, Figueiredo F M L, Marques F M B. Stability of metal oxides against Li/Na carbonates in composite electrolytes. Royal Society of Chemistry Advances, 2014, 4: 59943–59952

    CAS  Google Scholar 

  17. Chockalingam R, Jain S, Basu S. Studies on conductivity of composite GdCeO2-carbonate electrolytes for low temperature solid oxide fuel cells. Integrated Ferroelectrics, 2010, 116(1): 23–34

    CAS  Article  Google Scholar 

  18. Tan W, Fan L, Raza R, Khan M A, Zhu B. Studies of modified lithiated NiO cathode for low temperature solid oxide fuel cell with ceria-carbonate composite electrolyte. International Journal of Hydrogen Energy, 2013, 38(1): 370–376

    CAS  Article  Google Scholar 

  19. Di J, Chen M, Wang C, Zheng J, Fan L, Zhu B. Samarium doped ceria-(Li/Na)2CO3 composite electrolyte and its electrochemical properties in low temperature solid oxide fuel cell. Journal of Power Sources, 2010, 195(15): 4695–4699

    CAS  Article  Google Scholar 

  20. Richter J, Holtappelsm P, Graule T, Nakamura T, Gauckler L J. Materials design for perovskite SOFC cathodes. Monatshefte für Chemie, 2009, 140(9): 985–999

    CAS  Article  Google Scholar 

  21. Ota K, Mitsushima S, Kato S, Asano S, Yoshitake H, Kamiya N. Solubilities of nickel oxide in molten carbonate. Journal of the Electrochemical Society, 1992, 139(3): 667–671

    CAS  Article  Google Scholar 

  22. Doyon J, Gilbert T, Davies G, Paetsch L. NiO solubility in mixed alkali/alkaline earth carbonates. Journal of the Electrochemical Society, 1987, 134(12): 3035–3038

    CAS  Article  Google Scholar 

  23. Jiang S P. A comparison of O2 reduction reactions on porous (La, Sr) MnO3 and (La, Sr)(Co, Fe)O3 electrodes. Solid State Ionics, 2002, 146(1-2): 1–22

    CAS  Article  Google Scholar 

  24. Petric A, Huang P, Tietz F. Evaluation of La-Sr-Co-Fe-O perovskites for solid oxide fuel cells and gas separation membranes. Solid State Ionics, 2002, 135(1-4): 719–725

    Article  Google Scholar 

  25. Haile S M. Fuel cell materials and components. Acta Materialia, 2003, 51(19): 5981–6000

    CAS  Article  Google Scholar 

  26. Teraoka Y, Nobunaga T, Okamoto K, Miura N, Yamazoe N. Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability. Solid State Ionics, 1991, 48(3-4): 207–212

    CAS  Article  Google Scholar 

  27. Wiemhofer H D, Bremes H G, Nigge U, Zipprich W. Solid state ionics. Studies of ionic transport and oxygen exchange on oxide materials for electrochemical gas sensors. Solid State Ionics, 2002, 150(1-2): 63–77

    CAS  Article  Google Scholar 

  28. Seo E S M, Yoshito WK, Ussui V, Lazar D R R, Castanho S R HM, Paschoal J O A. Influence of the starting materials on performance of high temperature oxide fuel cells devices. Materials Research, 2004, 7(1): 215–220

    CAS  Article  Google Scholar 

  29. Adler S B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chemical Reviews, 2004, 104(10): 4791–4843

    CAS  Article  Google Scholar 

  30. Fu Y, Poizeau S, Bertei A, Qi C, Mohanram A, Pietras J D, Bazant M Z. Heterogeneous electrocatalysis in porous cathodes of solid oxide fuel cells. Electrochimica Acta, 2015, 159: 71–80

    CAS  Article  Google Scholar 

  31. Maguire E, Gharbage B, Margues F M B, Labrincha J A. Cathode materials for intermediate temperature SOFCs. Solid State Ionics, 2000, 127(3-4): 329–335

    CAS  Article  Google Scholar 

  32. Evans A, Martynczuk J, Stender D, Schneider C W, Lippert T, Prestat M. Low-temperature micro-solid oxide fuel cells with partially amorphous La0.6Sr0.4CoO3-σ cathodes. Advanced Energy Materials, 2015, 5(1): 1400747

    Article  Google Scholar 

  33. Evans A, Karalic S, Martynczuk J, Prestat M, Tolke R, Yang Z, Gauckler L J. La0.6Sr0.4CoO3-σ thin films prepared by pulsed laser deposition as cathodes for micro-solid oxide fuel cells. ECS Transactions, 2012, 45(1): 333–336

    CAS  Article  Google Scholar 

  34. Gao Z, Mogni L V, Miller E C, Railsback J G, Barnett S A. A perspective on low-temperature solid oxide fuel cells. Energy & Environmental Science, 2016, 9(5): 1602–1644

    CAS  Article  Google Scholar 

  35. Lee C. Analysis of impedance in a molten carbonate fuel cell. Journal of Electroanalytical Chemistry, 2016, 776: 162–169

    CAS  Article  Google Scholar 

  36. Nguyen H V P, Kang M G, Ham H C, Choi S H, Han J, Nam S W, Hong S A, Yoon S P. A new cathode for reduced-temperature molten carbonate fuel cells. Journal of the Electrochemical Society, 2014, 161(14): F1458–F1467

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work is a part of EU-Indigo project. The authors especially thank Academy of Finland for their financial support (Grant Nos. 13282962 and 13279204) with the framework of EU New Indigo programme. This work made use of the premises from Aalto University Nanomicroscopy Center (Aalto-NMC), Laboratory of Inorganic Chemistry and Department of Forest Products Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad I. Asghar.

Electronic supplementary material

11705_2017_1642_MOESM1_ESM.pdf

Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte with different perovskite structured cathode materials

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Asghar, M.I., Lepikko, S., Patakangas, J. et al. Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte with different perovskite structured cathode materials. Front. Chem. Sci. Eng. 12, 162–173 (2018). https://doi.org/10.1007/s11705-017-1642-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1642-2

Keywords

  • electrode
  • fuel cell
  • low-temperature
  • nanocomposite
  • perovskite