Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte with different perovskite structured cathode materials

  • Muhammad I. Asghar
  • Sakari Lepikko
  • Janne Patakangas
  • Janne Halme
  • Peter D. Lund
Research Article

Abstract

A comparative analysis of perovskite structured cathode materials, La0.65Sr0.35MnO3 (LSM), La0.8Sr0.2CoO3 (LSC), La0.6Sr0.4FeO3 (LSF) and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF), was performed for a ceramic-carbonate nanocomposite fuel cell using composite electrolyte consisting of Gd0.1Ce0.9O1.95 (GDC) and a eutectic mixture of Na2CO3 and Li2CO3. The compatibility of these nanocomposite electrode powder materials was investigated under air, CO2 and air/CO2 atmospheres at 550 °C. Microscopy measurements together with energy dispersive X-ray spectroscopy (EDS) elementary analysis revealed few spots with higher counts of manganese relative to lanthanum and strontium under pure CO2 atmosphere. Furthermore, electrochemical impedance (EIS) analysis showed that LSC had the lowest resistance to oxygen reduction reaction (ORR) (14.12 Ω∙cm2) followed by LSF (15.23 Ω∙cm2), LSCF (19.38 Ω∙cm2) and LSM (>300 Ω∙cm2). In addition, low frequency EIS measurements (down to 50 μHz) revealed two additional semi-circles at frequencies around 1 Hz. These semicircles can yield additional information about electrochemical reactions in the device. Finally, a fuel cell was fabricated using GDC/NLC nanocomposite electrolyte and its composite with NiO and LSCF as anode and cathode, respectively. The cell produced an excellent power density of 1.06 W/cm2 at 550 °C under fuel cell conditions.

Keywords

electrode fuel cell low-temperature nanocomposite perovskite 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

11705_2017_1642_MOESM1_ESM.pdf (458 kb)
Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte with different perovskite structured cathode materials

Copyright information

© Higher Education Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Muhammad I. Asghar
    • 1
  • Sakari Lepikko
    • 1
  • Janne Patakangas
    • 1
  • Janne Halme
    • 1
  • Peter D. Lund
    • 1
  1. 1.New Energy Technologies Group, Department of Applied PhysicsAalto UniversityAaltoFinland

Personalised recommendations