Frontiers of Chemical Science and Engineering

, Volume 11, Issue 1, pp 133–138 | Cite as

Production of rhamnolipids-producing enzymes of Pseudomonas in E. coli and structural characterization

Communication

Abstract

Rhamnolipids are a class of biosurfactants that have a great potential to be used in industries. Five proteins/enzymes, namely RhlA, RhlB, RhlC, RhlG and RhlI, are critical for the production of rhamnolipids in Pseudomonas aeruginosa. Four of the 5 proteins except RhlC were successfully over-expressed in E. coli and three of them (RhlA, RhlB and RhlI) were purified and obtained in milligram quantities. The purified proteins were shown to be folded in solution. Homology models were built for RhlA, RhlB and RhlI. These results lay a basis for further structural and functional characterization of these proteins in vitro to favor the construction of super strains for rhamnolipids production.

Keywords

rhamnolipids Pseudomonas RhlA RhlB RhlI protein folding 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research is supported by the Science and Engineering Research Council (SERC) of the Agency for Science, Technology and Research (A*STAR) of Singapore (SERC grant number: 1526004161).

References

  1. 1.
    Banat I M, Makkar R S, Cameotra S S. Potential commercial applications of microbial surfactants. Applied Microbiology and Biotechnology, 2000, 53(5): 495–508CrossRefGoogle Scholar
  2. 2.
    Desai J D, Banat I M. Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 1997, 61(1): 47–64Google Scholar
  3. 3.
    Makkar R, Cameotra S. An update on the use of unconventional substrates for biosurfactant production and their new applications. Applied Microbiology and Biotechnology, 2002, 58(4): 428–434CrossRefGoogle Scholar
  4. 4.
    Lovaglio R B, Silva V L, Ferreira H, Hausmann R, Contiero J. Rhamnolipids know-how: Looking for strategies for its industrial dissemination. Biotechnology Advances, 2015, 33(8): 1715–1726CrossRefGoogle Scholar
  5. 5.
    Dobler L, Vilela L F, Almeida R V, Neves B C. Rhamnolipids in perspective: Gene regulatory pathways, metabolic engineering, production and technological forecasting. New Biotechnology, 2016, 33(1): 123–135CrossRefGoogle Scholar
  6. 6.
    Shekhar S, Sundaramanickam A, Balasubramanian T. Biosurfactant producing microbes and their potential applications: A review. Critical Reviews in Environmental Science and Technology, 2015, 45(14): 1522–1554CrossRefGoogle Scholar
  7. 7.
    Henkel M, Müller M M, Kügler J H, Lovaglio R B, Contiero J, Syldatk C, Hausmann R. Rhamnolipids as biosurfactants from renewable resources: Concepts for next-generation rhamnolipid production. Process Biochemistry, 2012, 47(8): 1207–1219CrossRefGoogle Scholar
  8. 8.
    Müller M M, Kügler J H, Henkel M, Gerlitzki M, Hörmann B, Pöhnlein M, Syldatk C, Hausmann R. Rhamnolipids—next generation surfactants? Journal of Biotechnology, 2012, 162(4): 366–380CrossRefGoogle Scholar
  9. 9.
    Wittgens A, Tiso T, Arndt T T, Wenk P, Hemmerich J, Muller C, Wichmann R, Kupper B, Zwick M, Wilhelm S, et al. Growth independent rhamnolipid production from glucose using the nonpathogenic Pseudomonas putida KT2440. Microbial Cell Factories, 2011, 10(80), doi: 10.1186/1475-2859-10-80Google Scholar
  10. 10.
    Banat I M, Satpute S K, Cameotra S S, Patil R, Nyayanit N V. Cost effective technologies and renewable substrates for biosurfactants’ production. Frontiers in Microbiology, 2014, 5: 697CrossRefGoogle Scholar
  11. 11.
    Ochsner U A, Fiechter A, Reiser J. Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. Journal of Biological Chemistry, 1994, 269(31): 19787–19795Google Scholar
  12. 12.
    Rahim R, Ochsner U A, Olvera C, Graninger M, Messner P, Lam J S, Soberon-Chavez G. Cloning and functional characterization of the Pseudomonas aeruginosa rhlC gene that encodes rhamnosyltransferase 2, an enzyme responsible for di-rhamnolipid biosynthesis. Molecular Microbiology, 2001, 40(3): 708–718CrossRefGoogle Scholar
  13. 13.
    Zhu K, Rock C O. RhlA converts beta-hydroxyacyl-acyl carrier protein intermediates in fatty acid synthesis to the beta-hydroxydecanoyl-beta-hydroxydecanoate component of rhamnolipids in Pseudomonas aeruginosa. Journal of Bacteriology, 2008, 190(9): 3147–3154CrossRefGoogle Scholar
  14. 14.
    Ochsner U A, Reiser J. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(14): 6424–6428CrossRefGoogle Scholar
  15. 15.
    Ochsner U A, Koch A K, Fiechter A, Reiser J. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Journal of Bacteriology, 1994, 176(7): 2044–2054CrossRefGoogle Scholar
  16. 16.
    Parsek M R, Val D L, Hanzelka B L, Cronan J E Jr, Greenberg E P. Acyl homoserine-lactone quorum-sensing signal generation. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(8): 4360–4365CrossRefGoogle Scholar
  17. 17.
    Miller D J, Zhang Y M, Rock C O, White S W. Structure of RhlG, an essential beta-ketoacyl reductase in the rhamnolipid biosynthetic pathway of Pseudomonas aeruginosa. Journal of Biological Chemistry, 2006, 281(26): 18025–18032CrossRefGoogle Scholar
  18. 18.
    Jiang Y, Camara M, Chhabra S R, Hardie K R, Bycroft B W, Lazdunski A, Salmond G P, Stewart G S, Williams P. In vitro biosynthesis of the Pseudomonas aeruginosa quorum-sensing signal molecule N-butanoyl-l-homoserine lactone. Molecular Microbiology, 1998, 28(1): 193–203CrossRefGoogle Scholar
  19. 19.
    Hoang T T, Ma Y, Stern R J, McNeil M R, Schweizer H P. Construction and use of low-copy number T7 expression vectors for purification of problem proteins: Purification of mycobacterium tuberculosis RmlD and Pseudomonas aeruginosa LasI and RhlI proteins, and functional analysis of purified RhlI. Gene, 1999, 237(2): 361–371CrossRefGoogle Scholar
  20. 20.
    Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino T G, Bertoni M, Bordoli L, et al. SWISSMODEL: Modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Research, 2014, 42(Web Server issue): W252–258Google Scholar
  21. 21.
    Shinohara Y, Miyanaga A, Kudo F, Eguchi T. The crystal structure of the amidohydrolase VinJ shows a unique hydrophobic tunnel for its interaction with polyketide substrates. FEBS Letters, 2014, 588(6): 995–1000CrossRefGoogle Scholar
  22. 22.
    Claesson M, Siitonen V, Dobritzsch D, Metsa-Ketela M, Schneider G. Crystal structure of the glycosyltransferase SnogD from the biosynthetic pathway of nogalamycin in Streptomyces nogalater. FEBS Journal, 2012, 279(17): 3251–3263CrossRefGoogle Scholar
  23. 23.
    Chung J, Goo E, Yu S, Choi O, Lee J, Kim J, Kim H, Igarashi J, Suga H, Moon J S, et al. Small-molecule inhibitor binding to an N-acyl-homoserine lactone synthase. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(29): 12089–12094CrossRefGoogle Scholar
  24. 24.
    Parsek M R, Schaefer A L, Greenberg E P. Analysis of random and site-directed mutations in rhII, a Pseudomonas aeruginosa gene encoding an acylhomoserine lactone synthase. Molecular Microbiology, 1997, 26(2): 301–310CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of Chemical & Engineering SciencesAgency for Science, Technology and ResearchJurong IslandSingapore

Personalised recommendations