Genetic biosensors for small-molecule products: Design and applications in high-throughput screening

  • Qingzhuo Wang
  • Shuang-Yan Tang
  • Sheng Yang
Review Article


Overproduction of small-molecule chemicals using engineered microbial cells has greatly reduced the production cost and promoted environmental protection. Notably, the rapid and sensitive evaluation of the in vivo concentrations of the desired products greatly facilitates the optimization process of cell factories. For this purpose, many genetic components have been adapted into in vivo biosensors of small molecules, which couple the intracellular concentrations of small molecules to easily detectable readouts such as fluorescence, absorbance, and cell growth. Such biosensors allow a high-throughput screening of the small-molecule products, and can be roughly classified as protein-based and RNA-based biosensors. This review summarizes the recent developments in the design and applications of biosensors for small-molecule products.


biosensor small molecule product transcription factor riboswitch high-throughput screening 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Schallmey M, Frunzke J, Eggeling L, Marienhagen J. Looking for the pick of the bunch: High-throughput screening of producing microorganisms with biosensors. Current Opinion in Biotechnology, 2014, 26: 148–154CrossRefGoogle Scholar
  2. 2.
    Ro D K, Paradise E M, Ouellet M, Fisher K J, Newman K L, Ndungu J M, Ho K A, Eachus R A, Ham T S, Kirby J, et al. Production of the antimalarial drug precursor artemisinic acid in engineered yeast. Nature, 2006, 440(7086): 940–943CrossRefGoogle Scholar
  3. 3.
    Martin V J J, Pitera D J, Withers S T, Newman J D, Keasling J D. Engineering a mevalonate pathway in Escherichia coli for production of terpenoids. Nature Biotechnology, 2003, 21(7): 796–802CrossRefGoogle Scholar
  4. 4.
    Choi Y J, Lee S Y. Microbial production of short-chain alkanes. Nature, 2013, 502(7472): 571–574CrossRefGoogle Scholar
  5. 5.
    Dellomonaco C, Clomburg J M, Miller E N, Gonzalez R. Engineered reversal of the beta-oxidation cycle for the synthesis of fuels and chemicals. Nature, 2011, 476(7360): 355–359CrossRefGoogle Scholar
  6. 6.
    Enquist-Newman M, Faust A M E, Bravo D D, Santos C N S, Raisner R M, Hanel A, Sarvabhowman P, Le C, Regitsky D D, Cooper S R, et al. Efficient ethanol production from brown macroalgae sugars by a synthetic yeast platform. Nature, 2013, 505(7482): 239–243CrossRefGoogle Scholar
  7. 7.
    Becker J, Zelder O, Hafner S, Schroder H, Wittmann C. From zero to hero-design-based systems metabolic engineering of Corynebacterium glutamicum for l-lysine production. Metabolic Engineering, 2011, 13(2): 159–168CrossRefGoogle Scholar
  8. 8.
    Lee K H, Park J H, Kim T Y, Kim H U, Lee S Y. Systems metabolic engineering of Escherichia coli for l-threonine production. Molecular Systems Biology, 2007, 3(1): 149Google Scholar
  9. 9.
    Kind S, Neubauer S, Becker J, Yamamoto M, Volkert M, von Abendroth G, Zelder O, Wittmann C. From zero to hero—production of bio-based nylon from renewable resources using engineered Corynebacterium glutamicum. Metabolic Engineering, 2014, 25: 113–123CrossRefGoogle Scholar
  10. 10.
    Zhang Y X, Perry K, Vinci V A, Powell K, Stemmer W P C, del Cardayre S B. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature, 2002, 415(6872): 644–646CrossRefGoogle Scholar
  11. 11.
    Wang H H, Isaacs F J, Carr P A, Sun Z Z, Xu G, Forest C R, Church G M. Programming cells by multiplex genome engineering and accelerated evolution. Nature, 2009, 460(7257): 894–898CrossRefGoogle Scholar
  12. 12.
    Cobb R E, Chao R, Zhao H M. Directed evolution: Past, present, and future. AIChE Journal. American Institute of Chemical Engineers, 2013, 59(5): 1432–1440CrossRefGoogle Scholar
  13. 13.
    Alper H, Miyaoku K, Stephanopoulos G. Construction of lycopeneoverproducing E. coli strains by combining systematic and combinatorial gene knockout targets. Nature Biotechnology, 2005, 23(5): 612–616CrossRefGoogle Scholar
  14. 14.
    Jantama K, Haupt M J, Svoronos S A, Zhang X L, Moore J C, Shanmugam K T, Ingram L O. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnology and Bioengineering, 2008, 99(5): 1140–1153CrossRefGoogle Scholar
  15. 15.
    Dietrich J A, McKee A E, Keasling J D. High-throughput metabolic engineering: Advances in small-molecule screening and selection. Annual Review of Biochemistry, 2010, 79(1): 563–590CrossRefGoogle Scholar
  16. 16.
    Kim Y, Ingram L O, Shanmugam K T. Construction of an Escherichia coli K-12 mutant for homoethanologenic fermentation of glucose or xylose without foreign genes. Applied and Environmental Microbiology, 2007, 73(6): 1766–1771CrossRefGoogle Scholar
  17. 17.
    Zhou S, Iverson A G, Grayburn W S. Engineering a native homoethanol pathway in Escherichia coli B for ethanol production. Biotechnology Letters, 2008, 30(2): 335–342CrossRefGoogle Scholar
  18. 18.
    Solem C, Dehli T, Jensen P R. Rewiring Lactococcus lactis for ethanol production. Applied and Environmental Microbiology, 2013, 79(8): 2512–2518CrossRefGoogle Scholar
  19. 19.
    Shen C R, Lan E I, Dekishima Y, Baez A, Cho K M, Liao J C. Driving forces enable high-titer anaerobic l-butanol synthesis in Escherichia coli. Applied and Environmental Microbiology, 2011, 77(9): 2905–2915CrossRefGoogle Scholar
  20. 20.
    Lim J H, Seo S W, Kim S Y, Jung G Y. Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli. Metabolic Engineering, 2013, 20: 49–55CrossRefGoogle Scholar
  21. 21.
    Yim H, Haselbeck R, Niu W, Pujol-Baxley C, Burgard A, Boldt J, Khandurina J, Trawick J D, Osterhout R E, Stephen R, et al. Metabolic engineering of Escherichia coli for direct production of 1,4-butanediol. Nature Chemical Biology, 2011, 7(7): 445–452CrossRefGoogle Scholar
  22. 22.
    Ida Y, Hirasawa T, Furusawa C, Shimizu H. Utilization of saccharomyces cerevisiae recombinant strain incapable of both ethanol and glycerol biosynthesis for anaerobic bioproduction. Applied Microbiology and Biotechnology, 2013, 97(11): 4811–4819CrossRefGoogle Scholar
  23. 23.
    Zhang X, Jantama K, Moore J C, Shanmugam K T, Ingram L O. Production of l-alanine by metabolically engineered Escherichia coli. Applied Microbiology and Biotechnology, 2007, 77(2): 355–366CrossRefGoogle Scholar
  24. 24.
    Jantama K, Zhang X, Moore J C, Shanmugam K T, Svoronos S A, Ingram L O. Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnology and Bioengineering, 2008, 101(5): 881–893CrossRefGoogle Scholar
  25. 25.
    Klein-Marcuschamer D, Ajikumar P K, Stephanopoulos G. Engineering microbial cell factories for biosynthesis of isoprenoid molecules: Beyond lycopene. Trends in Biotechnology, 2007, 25(9): 417–424CrossRefGoogle Scholar
  26. 26.
    Santos C N S, Stephanopoulos G. Melanin-based high-throughput screen for l-tyrosine production in Escherichia coli. Applied and Environmental Microbiology, 2008, 74(4): 1190–1197CrossRefGoogle Scholar
  27. 27.
    DeLoache W C, Russ Z N, Narcross L, Gonzales A M, Martin V J, Dueber J E. An enzyme-coupled biosensor enables (S)-reticuline production in yeast from glucose. Nature Chemical Biology, 2015, 11(7): 465–471CrossRefGoogle Scholar
  28. 28.
    Binder S, Schendzielorz G, Stabler N, Krumbach K, Hoffmann K, Bott M, Eggeling L. A high-throughput approach to identify genomic variants of bacterial metabolite producers at the single-cell level. Genome Biology, 2012, 13(5): 1CrossRefGoogle Scholar
  29. 29.
    Lin H, Tao H, Cornish V W. Directed evolution of a glycosynthase via chemical complementation. Journal of the American Chemical Society, 2004, 126(46): 15051–15059CrossRefGoogle Scholar
  30. 30.
    Baker K, Bleczinski C, Lin H, Salazar-Jimenez G, Sengupta D, Krane S, Cornish V W. Chemical complementation: A reactionindependent genetic assay for enzyme catalysis. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(26): 16537–16542CrossRefGoogle Scholar
  31. 31.
    Frommer WB, Davidson M W, Campbell R E. Genetically encoded biosensors based on engineered fluorescent proteins. Chemical Society Reviews, 2009, 38(10): 2833–2841CrossRefGoogle Scholar
  32. 32.
    Lalonde S, Ehrhardt D W, Frommer WB. Shining light on signaling and metabolic networks by genetically encoded biosensors. Current Opinion in Plant Biology, 2005, 8(6): 574–581CrossRefGoogle Scholar
  33. 33.
    Okumoto S, Looger L L, Micheva K D, Reimer R J, Smith S J, Frommer W B. Detection of glutamate release from neurons by genetically encoded surface-displayed FRET nanosensors. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(24): 8740–8745CrossRefGoogle Scholar
  34. 34.
    de Lorimier R M, Smith J J, Dwyer M A, Looger L L, Sali K M, Paavola C D, Rizk S S, Sadigov S, Conrad D W, Loew L, et al. Construction of a fluorescent biosensor family. Protein Science, 2002, 11(11): 2655–2675CrossRefGoogle Scholar
  35. 35.
    Fehr M, Lalonde S, Lager I, Wolff M W, Frommer W B. In vivo imaging of the dynamics of glucose uptake in the cytosol of COS-7 cells by fluorescent nanosensors. Journal of Biological Chemistry, 2003, 278(21): 19127–19133CrossRefGoogle Scholar
  36. 36.
    Fehr M, Takanaga H, Ehrhardt D W, Frommer W B. Evidence for high-capacity bidirectional glucose transport across the endoplasmic reticulum membrane by genetically encoded fluorescence resonance energy transfer nanosensors. Molecular and Cellular Biology, 2005, 25(24): 11102–11112CrossRefGoogle Scholar
  37. 37.
    Kaper T, Lager I, Looger L L, Chermak D, Frommer W B. Fluorescence resonance energy transfer sensors for quantitative monitoring of pentose and disaccharide accumulation in bacteria. Biotechnology for Biofuels, 2008, 1(1): 1CrossRefGoogle Scholar
  38. 38.
    Fehr M, Frommer W B, Lalonde S. Visualization of maltose uptake in living yeast cells by fluorescent nanosensors. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(15): 9846–9851CrossRefGoogle Scholar
  39. 39.
    Deuschle K, Okumoto S, Fehr M, Looger L L, Kozhukh L, Frommer W B. Construction and optimization of a family of genetically encoded metabolite sensors by semirational protein engineering. Protein Science, 2005, 14(9): 2304–2314CrossRefGoogle Scholar
  40. 40.
    Okada S, Ota K, Ito T. Circular permutation of ligand-binding module improves dynamic range of genetically encoded FRETbased nanosensor. Protein Science, 2009, 18(12): 2518–2527CrossRefGoogle Scholar
  41. 41.
    Serganov A, Nudler E. A decade of riboswitches. Cell, 2013, 152(1-2): 17–24CrossRefGoogle Scholar
  42. 42.
    Yang J, Seo S W, Jang S, Shin S I, Lim C H, Roh T Y, Jung G Y. Synthetic RNA devices to expedite the evolution of metaboliteproducing microbes. Nature Communications, 2013, 4: 7Google Scholar
  43. 43.
    Wachsmuth M, Findeiss S, Weissheimer N, Stadler P F, Morl M. De novo design of a synthetic riboswitch that regulates transcription termination. Nucleic Acids Research, 2013, 41(4): 2541–2551CrossRefGoogle Scholar
  44. 44.
    Trausch J J, Ceres P, Reyes F E, Batey R T. The structure of a tetrahydrofolate-sensing riboswitch reveals two ligand binding sites in a single aptamer. Structure (London, England), 2011, 19(10): 1413–1423CrossRefGoogle Scholar
  45. 45.
    Desai S K, Gallivan J P. Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation. Journal of the American Chemical Society, 2004, 126(41): 13247–13254CrossRefGoogle Scholar
  46. 46.
    Win M N, Smolke C D. Higher-order cellular information processing with synthetic RNA devices. Science, 2008, 322(5900): 456–460CrossRefGoogle Scholar
  47. 47.
    Michener J K, Smolke C D. High-throughput enzyme evolution in Saccharomyces cerevisiae using a synthetic RNA switch. Metabolic Engineering, 2012, 14(4): 306–316CrossRefGoogle Scholar
  48. 48.
    Eckdahl T T, Campbell A M, Heyer L J, Poet J L, Blauch D N, Snyder N L, Atchley D T, Baker E J, Brown M, Brunner E C, et al. Programmed evolution for optimization of orthogonal metabolic output in bacteria. PLoS One, 2015, 10(2): 0118322CrossRefGoogle Scholar
  49. 49.
    Ellington A D, Szostak J W. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287): 818–822CrossRefGoogle Scholar
  50. 50.
    Win MN, Smolke C D. A modular and extensible RNA-based generegulatory platform for engineering cellular function. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(36): 14283–14288CrossRefGoogle Scholar
  51. 51.
    Ouellet J. RNA Fluorescence with light-up aptamers. Frontiers in Chemistry, 2016, 4: 29CrossRefGoogle Scholar
  52. 52.
    Nakayama S, Luo Y, Zhou J, Dayie T K, Sintim H O. Nanomolar fluorescent detection of c-di-GMP using a modular aptamer strategy. Chemical Communications, 2012, 48(72): 9059–9061CrossRefGoogle Scholar
  53. 53.
    Wang X C, Wilson S C, Hammond M C. Next-generation RNA-based fluorescent biosensors enable anaerobic detection of cyclic di-GMP. Nucleic Acids Research, 2016, 44(17): e139–e139CrossRefGoogle Scholar
  54. 54.
    Kellenberger C A, Hammond M C. In vitro analysis of riboswitch-Spinach aptamer fusions as metabolite-sensing fluorescent biosensors. Methods in Enzymology, 2015, 550: 147–172CrossRefGoogle Scholar
  55. 55.
    Paige J S, Nguyen-Duc T, Song W, Jaffrey S R. Fluorescence imaging of cellular metabolites with RNA. Science, 2012, 335(6073): 1194CrossRefGoogle Scholar
  56. 56.
    Su Y, Hickey S F, Keyser S G, Hammond M C. In vitro and in vivo enzyme activity screening via RNA-based fluorescent biosensors for S-adenosyl-l-homocysteine (SAH). Journal of the American Chemical Society, 2016, 138(22): 7040–7047CrossRefGoogle Scholar
  57. 57.
    Kellenberger C A, Chen C, Whiteley A T, Portnoy D A, Hammond M C. RNA-based fluorescent biosensors for live cell imaging of second messenger cyclic di-AMP. Journal of the American Chemical Society, 2015, 137(20): 6432–6435CrossRefGoogle Scholar
  58. 58.
    Binder S, Siedler S, Marienhagen J, Bott M, Eggeling L. Recombineering in corynebacterium glutamicum combined with optical nanosensors: A general strategy for fast producer strain generation. Nucleic Acids Research, 2013, 41(12): 6360–6369CrossRefGoogle Scholar
  59. 59.
    Schendzielorz G, Dippong M, Grunberger A, Kohlheyer D, Yoshida A, Binder S, Nishiyama C, Nishiyama M, Bott M, Eggeling L. Taking control over control: Use of product sensing in single cells to remove flux control at key enzymes in biosynthesis pathways. ACS Synthetic Biology, 2014, 3(1): 21–29CrossRefGoogle Scholar
  60. 60.
    Lange C, Mustafi N, Frunzke J, Kennerknecht N, Wessel M, Bott M, Wendisch V F. Lrp of Corynebacterium glutamicum controls expression of the brnFE operon encoding the export system for l-methionine and branched-chain amino acids. Journal of Biotechnology, 2012, 158(4): 231–241CrossRefGoogle Scholar
  61. 61.
    Mustafi N, Grunberger A, Kohlheyer D, Bott M, Frunzke J. The development and application of a single-cell biosensor for the detection of l-methionine and branched-chain amino acids. Metabolic Engineering, 2012, 14(4): 449–457CrossRefGoogle Scholar
  62. 62.
    Mahr R, Gatgens C, Gatgens J, Polen T, Kalinowski J, Frunzke J. Biosensor-driven adaptive laboratory evolution of l-valine production in Corynebacterium glutamicum. Metabolic Engineering, 2015, 32: 184–194CrossRefGoogle Scholar
  63. 63.
    Mustafi N, Grunberger A, Mahr R, Helfrich S, Noh K, Blombach B, Kohlheyer D, Frunzke J. Application of a genetically encoded biosensor for live cell imaging of l-valine production in pyruvate dehydrogenase complex-deficient Corynebacterium glutamicum strains. PLoS One, 2014, 9(1): e85731CrossRefGoogle Scholar
  64. 64.
    Bogner M, Ludewig U. Visualization of arginine influx into plant cells using a specific FRET-sensor. Journal of Fluorescence, 2007, 17(4): 350–360CrossRefGoogle Scholar
  65. 65.
    Mohsin M, Ahmad A. Genetically-encoded nanosensor for quantitative monitoring of methionine in bacterial and yeast cells. Biosensors & Bioelectronics, 2014, 59: 358–364CrossRefGoogle Scholar
  66. 66.
    Mohsin M, Abdin M Z, Nischal L, Kardam H, Ahmad A. Genetically encoded FRET-based nanosensor for in vivo measurement of leucine. Biosensors & Bioelectronics, 2013, 50: 72–77CrossRefGoogle Scholar
  67. 67.
    Wang J M, Gao D F, Yu X L, Li W, Qi Q S. Evolution of a chimeric aspartate kinase for l-lysine production using a synthetic RNA device. Applied Microbiology and Biotechnology, 2015, 99(20): 8527–8536CrossRefGoogle Scholar
  68. 68.
    Liu Y N, Li Q G, Zheng P, Zhang Z D, Liu Y F, Sun C M, Cao G Q, Zhou W J, Wang X W, Zhang D W, et al. Developing a highthroughput screening method for threonine overproduction based on an artificial promoter. Microbial Cell Factories, 2015, 14(1): 1CrossRefGoogle Scholar
  69. 69.
    Zaslaver A, Bren A, Ronen M, Itzkovitz S, Kikoin I, Shavit S, Liebermeister W, Surette M G, Alon U. A comprehensive library of fluorescent transcriptional reporters for Escherichia coli. Nature Methods, 2006, 3(8): 623–628CrossRefGoogle Scholar
  70. 70.
    Mahr R, von Boeselager R F, Wiechert J, Frunzke J. Screening of an Escherichia coli promoter library for a phenylalanine biosensor. Applied Microbiology and Biotechnology, 2016, 100(15):6739–6753Google Scholar
  71. 71.
    Dietrich J A, Shis D L, Alikhani A, Keasling J D. Transcription factor-based screens and synthetic selections for microbial smallmolecule biosynthesis. ACS Synthetic Biology, 2013, 2(1): 47–58CrossRefGoogle Scholar
  72. 72.
    Szmidt-Middleton H L, Ouellet M, Adams P D, Keasling J D, Mukhopadhyay A. Utilizing a highly responsive gene, yhjX, in E. coli based production of 1,4-butanediol. Chemical Engineering Science, 2013, 103: 68–73CrossRefGoogle Scholar
  73. 73.
    Uchiyama T, Miyazaki K. Product-induced gene expression, a product-responsive reporter assay used to screen metagenomic libraries for enzyme-encoding genes. Applied and Environmental Microbiology, 2010, 76(21): 7029–7035CrossRefGoogle Scholar
  74. 74.
    van Sint Fiet S, van Beilen J B, Witholt B. Selection of biocatalysts for chemical synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(6): 1693–1698CrossRefGoogle Scholar
  75. 75.
    Raman S, Rogers J K, Taylor N D, Church G M. Evolution-guided optimization of biosynthetic pathways. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(50): 17803–17808CrossRefGoogle Scholar
  76. 76.
    Chen W, Zhang S, Jiang P X, Yao J, He Y Z, Chen L C, Gui X W, Dong Z Y, Tang S Y. Design of an ectoine-responsive AraC mutant and its application in metabolic engineering of ectoine biosynthesis. Metabolic Engineering, 2015, 30: 149–155CrossRefGoogle Scholar
  77. 77.
    Mukherjee K, Bhattacharyya S, Peralta-Yahya P. GPCR-based chemical biosensors for medium-chain fatty acids. ACS Synthetic Biology, 2015, 4(12): 1261–1269CrossRefGoogle Scholar
  78. 78.
    Tang S Y, Cirino P C. Design and application of a mevalonateresponsive regulatory protein. Angewandte Chemie International Edition, 2011, 50(5): 1084–1086CrossRefGoogle Scholar
  79. 79.
    Tang S Y, Qian S, Akinterinwa O, Frei C S, Gredell J A, Cirino P C. Screening for enhanced triacetic acid lactone production by recombinant Escherichia coli expressing a designed triacetic acid lactone reporter. Journal of the American Chemical Society, 2013, 135(27): 10099–10103CrossRefGoogle Scholar
  80. 80.
    Hichri I, Barrieu F, Bogs J, Kappel C, Delrot S, Lauvergeat V. Recent advances in the transcriptional regulation of the flavonoid biosynthetic pathway. Journal of Experimental Botany, 2011, 62(8): 2465–2483CrossRefGoogle Scholar
  81. 81.
    Siedler S, Stahlhut S G, Malla S, Maury J, Neves A R. Novel biosensors based on flavonoid-responsive transcriptional regulators introduced into Escherichia coli. Metabolic Engineering, 2014, 21: 2–8CrossRefGoogle Scholar
  82. 82.
    Marin A M, Souza E M, Pedrosa F O, Souza L M, Sassaki G L, Baura V A, Yates M G, Wassem R, Monteiro R A. Naringenin degradation by the endophytic diazotroph Herbaspirillum seropedicae SmR1. Microbiology, 2013, 159(1): 167–175CrossRefGoogle Scholar
  83. 83.
    Teran W, Felipe A, Segura A, Rojas A, Ramos J L, Gallegos M T. Antibiotic-dependent induction of Pseudomonas putida DOT-T1E TtgABC efflux pump is mediated by the drug binding repressor TtgR. Antimicrobial Agents and Chemotherapy, 2003, 47(10): 3067–3072CrossRefGoogle Scholar
  84. 84.
    Jenison R D, Gill S C, Pardi A, Polisky B. High-resolution molecular discrimination by RNA. Science, 1994, 263(5152): 1425–1429CrossRefGoogle Scholar
  85. 85.
    Thompson K M, Syrett H A, Knudsen S M, Ellington A D. Group I aptazymes as genetic regulatory switches. BMC Biotechnology, 2002, 2(1): 1CrossRefGoogle Scholar
  86. 86.
    Chou H H, Keasling J D. Programming adaptive control to evolve increased metabolite production. Nature Communications, 2013, 4: 8CrossRefGoogle Scholar
  87. 87.
    Park Y H, Koo H M, Moon J O, Kim S J, Kim H J, Lee J K. LLysine-inducible promoter. US 07851198, Dec 14 2010, 2010Google Scholar
  88. 88.
    Wang Y, Li Q, Zheng P, Guo Y, Wang L, Zhang T, Sun J, Ma Y. Evolving the l-lysine high-producing strain of Escherichia coli using a newly developed high-throughput screening method. Journal of Industrial Microbiology & Biotechnology, 2016, 43(9): 1227–1235CrossRefGoogle Scholar
  89. 89.
    Kim Y S, Gu M B. Advances in aptamer screening and small molecule aptasensors. Biosensors Based on Aptamers and Enzymes, 2014, 140: 29–67CrossRefGoogle Scholar
  90. 90.
    Ruscito A, DeRosa M C. Small-molecule binding aptamers: Selection strategies, characterization, and applications. Frontiers in Chemistry, 2016, 4: 14CrossRefGoogle Scholar
  91. 91.
    McKeague M, Derosa M C. Challenges and opportunities for small molecule aptamer development. Journal of Nucleic Acids, 2012, 2012: 748913CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of Plant Physiology and EcologyShanghai Institutes for Biological SciencesShanghaiChina
  2. 2.University of the Chinese Academy of SciencesBeijingChina
  3. 3.CAS Key Laboratory of Microbial Physiological and Metebolic Engineering, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
  4. 4.Jiangsu National Synergetic Innovation Center for Advanced MaterialsNanjing Tech UniversityNanjingChina

Personalised recommendations