Skip to main content
Log in

Molecular dynamics study of water diffusion in an amphiphilic block copolymer with large difference in the blocks’ glass transition temperatures

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Isothermal-isobaric molecular dynamics simulation was used to study the diffusion mechanism of water in polyurethane-block-poly(N-isopropyl acrylamide) (PU-block-PNIPAm) with a hydrophobic PU/hydrophilic PNIPAm mass ratio of 1.4 to 1 at 298 K and 450 K. Here, the experimental glass transition temperature (T g ) of PU is 243 K while that of PNIPAm is 383 K. Different amounts of water up to 15 wt-% were added to PU-block-PNIPAm. We were able to reproduce the specific volumes and glass transition temperatures (250 K and 390 K) of PU-block-PNIPAm. The computed self-diffusion coefficient of water increased exponentially with increasing water concentration at both temperatures (i.e., following the free volume model of Fujita). It suggested that water diffusion in PU-block-PNIPAm depends only on its fractional free volume despite the free volume inhomogeneity. It is noted that at 298 K, PU is rubbery while PNIPAm is glassy. Regardless of temperature, radial distribution functions showed that water formed clusters with sizes in the range of 0.2–0.4 nm in PU-block-PNIPAm. At low water concentrations, more clusters were found in the PU domain but at high water concentrations, more in the PNIPAm domain. It is believed that water molecules diffuse as clusters rather than as individual molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mathews A S, Narine S. Poly[N-isopropyl acrylamide]-co-polyurethane copolymers for controlled release of urea. Journal of Polymer Science. Part A, Polymer Chemistry, 2010, 48(15): 3236–3243

    Article  CAS  Google Scholar 

  2. Seo Y, Brown J R, Hall L M. Effect of tapering on morphology and interfacial behavior of diblock copolymers from molecular dynamics simulations. Macromolecules, 2015, 48(14): 4974–4982

    Article  CAS  Google Scholar 

  3. Srinivas G, Discher D E, Klein ML. Self-assembly and properties of diblock copolymers by coarse-grain molecular dynamics. Nature Materials, 2004, 3(9): 638–644

    Article  CAS  Google Scholar 

  4. Fujita H, Kishimoto A, Matsumoto K. Concentration and temperature dependence of diffusion coefficients for systems polymethyl acrylate and n-alkyl acetates. Transactions of the Faraday Society, 1960, 56: 424–437

    Article  CAS  Google Scholar 

  5. Fujita H. Free-volume model of diffusion in polymer solutions. Advances in Polymer Science, 1961, 3: 1–47

    CAS  Google Scholar 

  6. Fujita H. Notes on free volume theories. Polymer Journal, 1991, 23(12): 1499–1506

    Article  CAS  Google Scholar 

  7. Fujita H. Comments on free volume theories for plymer-solvent systems. Chemical Engineering Science, 1993, 48(17): 3037–3042

    Article  CAS  Google Scholar 

  8. Williams M L, Landel R F, Ferry J D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glassforming liquids. Journal of the American Chemical Society, 1955, 77(14): 3701–3707

    Article  CAS  Google Scholar 

  9. Hess B, Kutzner C, Van der Spoel D, Lindahl E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 2008, 4(3): 435–447

    Article  CAS  Google Scholar 

  10. Van der Spoel D, Lindahl E, Hess B, Groenhof G, Mark A E, Berendsen H J C. GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 2005, 26(16): 1701–1718

    Article  Google Scholar 

  11. Lindahl E, Hess B, Van der Spoel D. GROMACS 3.0: A package for molecular simulation and trajectory analysis. Journal of Molecular Modeling, 2001, 7(8): 306–317

    Article  CAS  Google Scholar 

  12. Berendsen H J, Van der Spoel D, van Drunen R. GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 1995, 91(1–3): 43–56

    Article  CAS  Google Scholar 

  13. Ostenbrink C, Villa A, Mark A E, van Gunsteren W F. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry, 2004, 25(13): 1656–1676

    Article  Google Scholar 

  14. Daura X, Mark A E, van Gunsteren W F. Parametrization of aliphatic CHn united atoms of GROMOS96 force field. Journal of Computational Chemistry, 1998, 19(5): 535–547

    Article  CAS  Google Scholar 

  15. Berendsen H J, Postma J P, van Gunsteren W F, Hermans J. Interaction models for water in relation to protein hydration. Intermolecular Forces, 1981, 331–342

    Chapter  Google Scholar 

  16. Theodorou D N, Suter U W. Detailed molecular structure of a vinyl polymer glass. Macromolecules, 1985, 18(7): 1467–1478

    Article  CAS  Google Scholar 

  17. Hoover W G. Canonical dynamics: Equilibrium phase-space distributions. Physical Review A., 1985, 31(3): 1695–1697

    Article  CAS  Google Scholar 

  18. Parrinello M, Rahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 1981, 52(12): 7182–7190

    Article  CAS  Google Scholar 

  19. Zhang Q G, Liu Q L, Chen Y, Wu J Y, Zhu A M. Microstructure dependent diffusion of water-ethanol in swollen poly (vinyl alcohol): A molecular dynamics simulation study. Chemical Engineering Science, 2009, 64(2): 334–340

    Article  CAS  Google Scholar 

  20. Bondi A. van der Waals volumes and radii. Journal of Physical Chemistry, 1964, 68(3): 441–451

    Article  CAS  Google Scholar 

  21. Raghu A V, Gadaginamath G S, Jawalkar S S, Halligudi S B, Aminabhavi T M. Synthesis, characterization, and molecular modeling studies of novel polyurethanes based on 2,2'-[ethane-1,2-diylbis (nitrilomethylylidene)] diphenol and 2,2'-[hexane-1,6-diylbis (nitrilomethylylidene)] diphenol hard segments. Journal of Polymer Science. Part A, Polymer Chemistry, 2006, 44(20): 6032–6046

    Article  CAS  Google Scholar 

  22. Zhou D, Bayati F, Choi P. On the weak dependence of water diffusivity on the degree of hydrophobicity of acetylated hydroxypropyl xylan. Carbohydrate Polymers, 2013, 98(1): 644–649

    Article  CAS  Google Scholar 

  23. Schild H G. Poly(N-isopropylacrylamide): Experiment, theory and application. Progress in Polymer Science, 1992, 17(2): 163–249

    Article  CAS  Google Scholar 

  24. Harmandaris V, Mavrantzas V, Theodorou D, Kröger M, Ramírez J, Öttinger H C, Vlassopoulos D. Crossover from the rouse to the entangled polymer melt regime: Signals from long, detailed atomistic molecular dynamics simulations, supported by rheological experiments. Macromolecules, 2003, 36(4): 1376–1387

    Article  CAS  Google Scholar 

  25. Cohen M H, Turnbull D. Molecular transport in liquids and glasses. Journal of Chemical Physics, 1959, 31(5): 1164–1169

    Article  CAS  Google Scholar 

  26. Sreenivasan K. Diffusion of water and alcohol in chemically modified polyurethane. Polymer International, 1993, 30(3): 363–365

    Article  CAS  Google Scholar 

  27. Pulat M, Akdogan A. The diffusion and bulk properties of polyurethane (PU)-based hydrophilic and hydrophobic membranes. Journal of Applied Polymer Science, 2002, 85: 193–198

    Article  CAS  Google Scholar 

  28. McNeill M E, Graham N B. Properties controlling the diffusion and release of water-soluble solutes from poly(ethylene oxide) hydrogels 1. Polymer composition. Journal of Biomaterials Science. Polymer Edition, 1993, 4(3): 305–322

    Article  CAS  Google Scholar 

  29. Costa L, Storti G. Self-diffusion of small molecules into rubbery polymers: A lattice free-volume theory. Journal of Polymer Science. Part B, Polymer Physics, 2010, 48(5): 529–540

    Article  CAS  Google Scholar 

  30. Scholfield M R, Ford M C, Van der Zanden C M, Billman M M, Ho P S, Rappé A K. Force field model of periodic trends in biomolecular halogen bonds. Journal of Physical Chemistry B, 2015, 119(29): 9140–9149

    Article  CAS  Google Scholar 

  31. Tamai Y, Tanaka H, Nakanishi K. Molecular dynamics study of water in hydrogels. Molecular Simulation, 1996, 16(4–6): 359–374

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank WestGrid and Compute/Calcul Canada for providing the computational facility and support for this research. Funding from Agriculture Funding Consortium was greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phillip Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Choi, P. Molecular dynamics study of water diffusion in an amphiphilic block copolymer with large difference in the blocks’ glass transition temperatures. Front. Chem. Sci. Eng. 11, 440–447 (2017). https://doi.org/10.1007/s11705-017-1626-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1626-2

Keywords

Navigation