Frontiers of Chemical Science and Engineering

, Volume 11, Issue 3, pp 317–327 | Cite as

The influence of curing conditions on the mechanical properties and leaching of inorganic polymers made of fayalitic slag

  • Remus I. Iacobescu
  • Valérie Cappuyns
  • Tinne Geens
  • Lubica Kriskova
  • Silviana Onisei
  • Peter T. Jones
  • Yiannis Pontikes
Research Article


This study reports on the impact of the curing conditions on the mechanical properties and leaching of inorganic polymer (IP) mortars made from a water quenched fayalitic slag. Three similar IP mortars were produced by mixing together slag, aggregate and activating solution, and cured in three different environments for 28 d: a) at 20 °C and relative humidity (RH) ~ 50% (T20RH50), b) at 20 °C and RH≥90% (T20RH90) and c) at 60 °C and RH ~ 20% (T60RH20). Compressive strength (EN 196-1) varied between 19 MPa (T20RH50) and 31 MPa (T20RH90). This was found to be attributed to the cracks formed upon curing. Geochemical modelling and two leaching tests were performed, the EA NEN 7375 tank test, and the BS EN 12457-1 single batch test. Results show that Cu, Ni, Pb, Zn and As leaching occurred even at high pH, which varied between 10 and 11 in the tank test’s leachates and between 12 and 12.5 in the single batch’s leachates. Leaching values obtained were below the requirements for non-shaped materials of Flemish legislation for As, Cu and Ni in the single batch test.


inorganic polymer geochemical leaching modelling heavy metals recycling non-ferrous fayalitic slag curing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The EPMA-WDS work has been feasible due to the support of the Hercules Foundation (project ZW09-09).


  1. 1.
    The European Slag Association. Legas status of slags. Position paper on the status of Ferrous slag, 2012Google Scholar
  2. 2.
    Shi C, Qian J. High performance cementing materials from industrial slags—a review. Resources, Conservation and Recycling, 2000, 29(3): 195–207CrossRefGoogle Scholar
  3. 3.
    Al-Jabri K S, Hisada M, Al-Saidy A H, Al-Oraimi S K. Performance of high strength concrete made with copper slag as a fine aggregate. Construction & Building Materials, 2009, 23(6): 2132–2140CrossRefGoogle Scholar
  4. 4.
    Khanzadi M, Behnood A. Mechanical properties of high-strength concrete incorporating copper slag as coarse aggregate. Construction & Building Materials, 2009, 23(6): 2183–2188CrossRefGoogle Scholar
  5. 5.
    Onisei S, Lesage K, Blanpain B, Pontikes Y. Early age microstructural transformations of an inorganic polymer made of fayalite slag. Journal of the American Ceramic Society, 2015, 98(7): 2269–2277CrossRefGoogle Scholar
  6. 6.
    Shi C, Meyer C, Behnood A. Utilization of copper slag in cement and concrete. Resources, Conservation and Recycling, 2008, 52(10): 1115–1120CrossRefGoogle Scholar
  7. 7.
    Zain M F M, Islam M N, Radin S S, Yap S G. Cement-based solidification for the safe disposal of blasted copper slag. Cement and Concrete Composites, 2004, 26(7): 845–851CrossRefGoogle Scholar
  8. 8.
    Davidovits J. Geopolymer Chemistry and Applications. France: Geopolymer Institute, 2015, 3–17Google Scholar
  9. 9.
    Onisei S, Pontikes Y, van Gerven T, Angelopoulos G N, Velea T, Predica V, Moldovan P. Synthesis of inorganic polymers using fly ash and primary lead slag. Journal of Hazardous Materials, 2012, 205-206: 101–110CrossRefGoogle Scholar
  10. 10.
    Pontikes Y, Machiels L, Onisei S, Pandelaers L, Geysen D, Jones P T, Blanpain B. Slags with a high Al and Fe content as precursors for inorganic polymers. Applied Clay Science, 2013, 73: 93–102CrossRefGoogle Scholar
  11. 11.
    Perera D S, Aly Z, Vance E R, Mizumo M. Immobilization of Pb in a geopolymer matrix. Journal of the American Ceramic Society, 2005, 88(9): 2586–2588CrossRefGoogle Scholar
  12. 12.
    Hanzlicek T, Steinerova M, Straka P. Radioactive metal isotopes stabilized in a geopolymer matrix: Determination of a leaching extract by a radiotracer method. Journal of the American Ceramic Society, 2006, 89(11): 3541–3543CrossRefGoogle Scholar
  13. 13.
    Fernández-Jiménez A, Palomo A, Macphee D E, Lachowski E E. Fixing arsenic in alkali-activated cementitious matrices. Journal of the American Ceramic Society, 2005, 88(5): 1122–1126CrossRefGoogle Scholar
  14. 14.
    Palomo A, Palacios M. Alkali-activated cementitious materials: Alternative matrices for the immobilisation of hazardous wastes: Part II. Stabilisation of chromium and lead. Cement and Concrete Research, 2003, 33(2): 289–295CrossRefGoogle Scholar
  15. 15.
    Zhang Y, Sun W, Chen Q, Chen L. Synthesis and heavy metal immobilization behaviors of slag based geopolymer. Journal of Hazardous Materials, 2007, 143(1–2): 206–213Google Scholar
  16. 16.
    Izquierdo M, Querol X, Phillipart C, Antenucci D, Towler M. The role of open and closed curing conditions on the leaching properties of fly ash-slag-based geopolymers. Journal of Hazardous Materials, 2010, 176(1–3): 623–628CrossRefGoogle Scholar
  17. 17.
    Phair J W, van Deventer J S J. Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers. Minerals Engineering, 2001, 14(3): 289–304CrossRefGoogle Scholar
  18. 18.
    van Deventer J S J, Provis J L, Duxson P, Lukey G C. Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. Journal of Hazardous Materials, 2007, 139(3): 506–513CrossRefGoogle Scholar
  19. 19.
    van Jaarsveld J G S, van Deventer J S J. The effect of metal contaminants on the formation and properties of waste-based geopolymers. Cement and Concrete Research, 1999, 29(8): 1189–1200CrossRefGoogle Scholar
  20. 20.
    Tavor D, Wolfson A, Shamaev A, Shvarzman A. Recycling of industrial wastewater by its immobilization in geopolymer cement. Industrial & Engineering Chemistry Research, 2007, 46(21): 6801–6805CrossRefGoogle Scholar
  21. 21.
    Deja J. Immobilization of Cr6+, Cd2+, Zn2+ and Pb2+ in alkaliactivated slag binders. Cement and Concrete Research, 2002, 32(12): 1971–1979CrossRefGoogle Scholar
  22. 22.
    Quina M J, Bordado J C M, Quinta-Ferreira R M. The influence of pH on the leaching behaviour of inorganic components from municipal solid waste APC residues. Waste Management (New York, N.Y.), 2009, 29(9): 2483–2493CrossRefGoogle Scholar
  23. 23.
    Muñiz-Villarreal M S, Manzano-Ramírez A, Sampieri-Bulbarela S, Gasca-Tirado J, Reyes-Araiza J L, Rubio-Ávalos J C, Pérez-Bueno J J, Apatiga L M, Zaldivar-Cadena A, Amigó-Borrás V. The effect of temperature on the geopolymerization process of a metakaolin-based geopolymer. Materials Letters, 2011, 65(6): 995–998CrossRefGoogle Scholar
  24. 24.
    van Jaarsveld J G S, van Deventer J S J, Schwartzman A. The potential use of geopolymeric materials to immobilise toxic metals: Part II. Material and leaching characteristics. Minerals Engineering, 1999, 12(1): 75–91Google Scholar
  25. 25.
    Komnitsas K, Zaharaki D, Bartzas G. Effect of sulphate and nitrate anions on heavy metal immobilisation in ferronickel slag geopolymers. Applied Clay Science, 2013, 73(0): 103–109CrossRefGoogle Scholar
  26. 26.
    Snellings R, Machiels L, Mertens G, Elsen J. Rietveld refinement strategy for qualitative phase analysis of partially amorphous zeolitized tuffaceous rocks. Geologica Belgica, 2010, 13(3): 183–196Google Scholar
  27. 27.
    Panagiotopoulou C, Kontori E, Perraki T H, Kakali G. Dissolution of aluminosilicate minerals and by-products in alkaline media. Journal of Materials Science, 2007, 42(9): 2967–2973CrossRefGoogle Scholar
  28. 28.
    Environment agency NEN 7375-2004. Leaching characteristics of moulded or monolithic building and waste materials. Determination of leaching of inorganic components with the diffusion test. The tank test. Delft: The Netherlands Normalisation Institute, 2004Google Scholar
  29. 29.
    BS EN 12457-1:2002. Characterisation of waste—Leaching —Compliance test for leaching of granular waste materials and sludges. Part 1: One stage batch test at a liquid to solid ratio of 2 L/kg for materials with high solid content and with particle size below 4 mm (without or with size reduction), 2002Google Scholar
  30. 30.
    Allison J D, Brown D S, Novogradac K J. MINTEQA2/PRODEFA2. A chemical assessment model for environmental systems: Version 4.0 user’s manual. Environmental Research Laboratory Office of Research and Development, 1999Google Scholar
  31. 31.
    Gustafsson J P. Visual MINTEQ. Version 3.0: A Windows version of MINTEQA2, version 4.0. 2004Google Scholar
  32. 32.
    VLAREMA. Flemish regulation on the sustainable management of material cycles and waste. VLAREMA, 2016, 3 (in Dutch)Google Scholar
  33. 33.
    Parsons MB, Bird D K, Einaudi MT, Alpers C N. Geochemical and mineralogical controls on trace element release from the Penn Mine base-metal slag dump. California. Applied Geochemistry, 2001, 16(14): 1567–1593CrossRefGoogle Scholar
  34. 34.
    Pontikes Y, Machiels L, Onisei S, Pandelaers L, Geysen D, Jones P T, Blanpain B. Slags with a high Al and Fe content as precursors for inorganic polymers. Applied Clay Science, 2013, 73: 93–102CrossRefGoogle Scholar
  35. 35.
    Davidovits J A. Geopolymers: Inorganic polymeric new materials. Journal of Materials Education, 1994, 16(2–3): 91–139Google Scholar
  36. 36.
    Perera D S, Cashion J D, Blackford M G, Zhang Z, Vance E R. Fe speciation in geopolymers with Si/Al molar ratio of ~2. Journal of the European Ceramic Society, 2007, 27(7): 2697–2703CrossRefGoogle Scholar
  37. 37.
    Bell J L. Formation of an iron-based inorganic polymer (geopolymer). In: Proceedings of Mechanical Properties and Performance of Engineering Ceramics and Composites IV. Wiley: Hoboken, 2010, 301–312Google Scholar
  38. 38.
    Chen A, Zhao Z W, Jia X, Long S, Huo G, Chen X. Alkaline leaching Zn and its concomitant metals from refractory hemimorphite zinc oxide ore. Hydrometallurgy, 2009, 97(3–4): 228–232CrossRefGoogle Scholar
  39. 39.
    Puligilla S. Understanding the role of slag on geopolymer hardening and microstructural development. Dissertation for the Master Degree. Urbana: University of Illinois, 2011, 84Google Scholar
  40. 40.
    Provis J L. Modelling the formation of geopolymers. Dissertation for the Doctoral Degree. Australia: University of Melbourne, 2006, 282Google Scholar
  41. 41.
    Williams R P, Hart R D, van Riessen A. Quantification of the extent of reaction of metakaolin-based geopolymers using X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. Journal of the American Ceramic Society, 2011, 94(8): 2663–2670CrossRefGoogle Scholar
  42. 42.
    Mihailova I, Mehandjiev D. Characterization of fayalite from copper slags. Journal of the University of Chemical Technology and Metallurgy, 2010, 45(3): 317–326Google Scholar
  43. 43.
    Lappi S E, Smith B, Franzen S. Infrared spectra of H2 16O, H2 18O and D2O in the liquid phase by single-pass attenuated total internal reflection spectroscopy. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2004, 60(11): 2611–2619CrossRefGoogle Scholar
  44. 44.
    Hanna R, Su G J. Infrared absorption spectra of sodium silicate glasses from 4 to 40 microns. Journal of the American Ceramic Society, 1964, 47(12): 597–601CrossRefGoogle Scholar
  45. 45.
    Gervais F, Blin A, Massiot D, Coutures J P, Chopinet M H, Naudin F. Infrared reflectivity spectroscopy of silicate glasses. Journal of Non-Crystalline Solids, 1987, 89(3): 384–401CrossRefGoogle Scholar
  46. 46.
    Kuenzel C, Vandeperre L J, Donatello S, Boccaccini A R, Cheeseman C. Ambient Temperature Drying Shrinkage and Cracking in Metakaolin-Based Geopolymers. Journal of the American Ceramic Society, 2012, 95(10): 3270–3277CrossRefGoogle Scholar
  47. 47.
    Ismail I, Bernal S A, Provis J L, Hamdan S, van Deventer J S J. Drying-induced changes in the structure of alkali-activated pastes. Journal of Materials Science, 2013, 48(9): 3566–3577CrossRefGoogle Scholar
  48. 48.
    European Committee for Standardisation. EN 197-1. Norm for Cement. Part 1, 2000Google Scholar
  49. 49.
    de Groot G J. Development of a leaching method for the determination of the environmental quality of concrete. European ComissionFinal Report. EUR 17869 EN, 1997Google Scholar
  50. 50.
    Van der Sloot H A. Development of horizontally standardized leaching tests for construction materials: A material based or release based approach? Identical leaching mechanisms for different materials. Report ECN-C-04-060, 2004Google Scholar
  51. 51.
    Dell’Orso M, Mangialardi T, Paolini A E, Piga L. Evaluation of the leachability of heavy metals from cement-based materials. Journal of Hazardous Materials, 2012, 227-228: 1–8CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Remus I. Iacobescu
    • 1
  • Valérie Cappuyns
    • 2
    • 3
  • Tinne Geens
    • 4
  • Lubica Kriskova
    • 1
  • Silviana Onisei
    • 1
  • Peter T. Jones
    • 1
  • Yiannis Pontikes
    • 1
  1. 1.Department of Materials EngineeringKU LeuvenLeuvenBelgium
  2. 2.Department of Earth and Environmental SciencesKU LeuvenLeuvenBelgium
  3. 3.Faculty of Economics and BusinessKU LeuvenBrusselsBelgium
  4. 4.Department of Healthcare and TechnologyKU LeuvenLeuvenBelgium

Personalised recommendations