Skip to main content
Log in

The influence of curing conditions on the mechanical properties and leaching of inorganic polymers made of fayalitic slag

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

This study reports on the impact of the curing conditions on the mechanical properties and leaching of inorganic polymer (IP) mortars made from a water quenched fayalitic slag. Three similar IP mortars were produced by mixing together slag, aggregate and activating solution, and cured in three different environments for 28 d: a) at 20 °C and relative humidity (RH) ~ 50% (T20RH50), b) at 20 °C and RH≥90% (T20RH90) and c) at 60 °C and RH ~ 20% (T60RH20). Compressive strength (EN 196-1) varied between 19 MPa (T20RH50) and 31 MPa (T20RH90). This was found to be attributed to the cracks formed upon curing. Geochemical modelling and two leaching tests were performed, the EA NEN 7375 tank test, and the BS EN 12457-1 single batch test. Results show that Cu, Ni, Pb, Zn and As leaching occurred even at high pH, which varied between 10 and 11 in the tank test’s leachates and between 12 and 12.5 in the single batch’s leachates. Leaching values obtained were below the requirements for non-shaped materials of Flemish legislation for As, Cu and Ni in the single batch test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. The European Slag Association. Legas status of slags. Position paper on the status of Ferrous slag, 2012

  2. Shi C, Qian J. High performance cementing materials from industrial slags—a review. Resources, Conservation and Recycling, 2000, 29(3): 195–207

    Article  Google Scholar 

  3. Al-Jabri K S, Hisada M, Al-Saidy A H, Al-Oraimi S K. Performance of high strength concrete made with copper slag as a fine aggregate. Construction & Building Materials, 2009, 23(6): 2132–2140

    Article  Google Scholar 

  4. Khanzadi M, Behnood A. Mechanical properties of high-strength concrete incorporating copper slag as coarse aggregate. Construction & Building Materials, 2009, 23(6): 2183–2188

    Article  Google Scholar 

  5. Onisei S, Lesage K, Blanpain B, Pontikes Y. Early age microstructural transformations of an inorganic polymer made of fayalite slag. Journal of the American Ceramic Society, 2015, 98(7): 2269–2277

    Article  CAS  Google Scholar 

  6. Shi C, Meyer C, Behnood A. Utilization of copper slag in cement and concrete. Resources, Conservation and Recycling, 2008, 52(10): 1115–1120

    Article  Google Scholar 

  7. Zain M F M, Islam M N, Radin S S, Yap S G. Cement-based solidification for the safe disposal of blasted copper slag. Cement and Concrete Composites, 2004, 26(7): 845–851

    Article  CAS  Google Scholar 

  8. Davidovits J. Geopolymer Chemistry and Applications. France: Geopolymer Institute, 2015, 3–17

    Google Scholar 

  9. Onisei S, Pontikes Y, van Gerven T, Angelopoulos G N, Velea T, Predica V, Moldovan P. Synthesis of inorganic polymers using fly ash and primary lead slag. Journal of Hazardous Materials, 2012, 205-206: 101–110

    Article  CAS  Google Scholar 

  10. Pontikes Y, Machiels L, Onisei S, Pandelaers L, Geysen D, Jones P T, Blanpain B. Slags with a high Al and Fe content as precursors for inorganic polymers. Applied Clay Science, 2013, 73: 93–102

    Article  CAS  Google Scholar 

  11. Perera D S, Aly Z, Vance E R, Mizumo M. Immobilization of Pb in a geopolymer matrix. Journal of the American Ceramic Society, 2005, 88(9): 2586–2588

    Article  CAS  Google Scholar 

  12. Hanzlicek T, Steinerova M, Straka P. Radioactive metal isotopes stabilized in a geopolymer matrix: Determination of a leaching extract by a radiotracer method. Journal of the American Ceramic Society, 2006, 89(11): 3541–3543

    Article  CAS  Google Scholar 

  13. Fernández-Jiménez A, Palomo A, Macphee D E, Lachowski E E. Fixing arsenic in alkali-activated cementitious matrices. Journal of the American Ceramic Society, 2005, 88(5): 1122–1126

    Article  Google Scholar 

  14. Palomo A, Palacios M. Alkali-activated cementitious materials: Alternative matrices for the immobilisation of hazardous wastes: Part II. Stabilisation of chromium and lead. Cement and Concrete Research, 2003, 33(2): 289–295

    Article  CAS  Google Scholar 

  15. Zhang Y, Sun W, Chen Q, Chen L. Synthesis and heavy metal immobilization behaviors of slag based geopolymer. Journal of Hazardous Materials, 2007, 143(1–2): 206–213

    CAS  Google Scholar 

  16. Izquierdo M, Querol X, Phillipart C, Antenucci D, Towler M. The role of open and closed curing conditions on the leaching properties of fly ash-slag-based geopolymers. Journal of Hazardous Materials, 2010, 176(1–3): 623–628

    Article  CAS  Google Scholar 

  17. Phair J W, van Deventer J S J. Effect of silicate activator pH on the leaching and material characteristics of waste-based inorganic polymers. Minerals Engineering, 2001, 14(3): 289–304

    Article  CAS  Google Scholar 

  18. van Deventer J S J, Provis J L, Duxson P, Lukey G C. Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. Journal of Hazardous Materials, 2007, 139(3): 506–513

    Article  Google Scholar 

  19. van Jaarsveld J G S, van Deventer J S J. The effect of metal contaminants on the formation and properties of waste-based geopolymers. Cement and Concrete Research, 1999, 29(8): 1189–1200

    Article  Google Scholar 

  20. Tavor D, Wolfson A, Shamaev A, Shvarzman A. Recycling of industrial wastewater by its immobilization in geopolymer cement. Industrial & Engineering Chemistry Research, 2007, 46(21): 6801–6805

    Article  CAS  Google Scholar 

  21. Deja J. Immobilization of Cr6+, Cd2+, Zn2+ and Pb2+ in alkaliactivated slag binders. Cement and Concrete Research, 2002, 32(12): 1971–1979

    Article  CAS  Google Scholar 

  22. Quina M J, Bordado J C M, Quinta-Ferreira R M. The influence of pH on the leaching behaviour of inorganic components from municipal solid waste APC residues. Waste Management (New York, N.Y.), 2009, 29(9): 2483–2493

    Article  CAS  Google Scholar 

  23. Muñiz-Villarreal M S, Manzano-Ramírez A, Sampieri-Bulbarela S, Gasca-Tirado J, Reyes-Araiza J L, Rubio-Ávalos J C, Pérez-Bueno J J, Apatiga L M, Zaldivar-Cadena A, Amigó-Borrás V. The effect of temperature on the geopolymerization process of a metakaolin-based geopolymer. Materials Letters, 2011, 65(6): 995–998

    Article  Google Scholar 

  24. van Jaarsveld J G S, van Deventer J S J, Schwartzman A. The potential use of geopolymeric materials to immobilise toxic metals: Part II. Material and leaching characteristics. Minerals Engineering, 1999, 12(1): 75–91

    Google Scholar 

  25. Komnitsas K, Zaharaki D, Bartzas G. Effect of sulphate and nitrate anions on heavy metal immobilisation in ferronickel slag geopolymers. Applied Clay Science, 2013, 73(0): 103–109

    Article  CAS  Google Scholar 

  26. Snellings R, Machiels L, Mertens G, Elsen J. Rietveld refinement strategy for qualitative phase analysis of partially amorphous zeolitized tuffaceous rocks. Geologica Belgica, 2010, 13(3): 183–196

    CAS  Google Scholar 

  27. Panagiotopoulou C, Kontori E, Perraki T H, Kakali G. Dissolution of aluminosilicate minerals and by-products in alkaline media. Journal of Materials Science, 2007, 42(9): 2967–2973

    Article  CAS  Google Scholar 

  28. Environment agency NEN 7375-2004. Leaching characteristics of moulded or monolithic building and waste materials. Determination of leaching of inorganic components with the diffusion test. The tank test. Delft: The Netherlands Normalisation Institute, 2004

  29. BS EN 12457-1:2002. Characterisation of waste—Leaching —Compliance test for leaching of granular waste materials and sludges. Part 1: One stage batch test at a liquid to solid ratio of 2 L/kg for materials with high solid content and with particle size below 4 mm (without or with size reduction), 2002

  30. Allison J D, Brown D S, Novogradac K J. MINTEQA2/PRODEFA2. A chemical assessment model for environmental systems: Version 4.0 user’s manual. Environmental Research Laboratory Office of Research and Development, 1999

    Google Scholar 

  31. Gustafsson J P. Visual MINTEQ. Version 3.0: A Windows version of MINTEQA2, version 4.0. 2004

  32. VLAREMA. Flemish regulation on the sustainable management of material cycles and waste. VLAREMA, 2016, 3 (in Dutch)

  33. Parsons MB, Bird D K, Einaudi MT, Alpers C N. Geochemical and mineralogical controls on trace element release from the Penn Mine base-metal slag dump. California. Applied Geochemistry, 2001, 16(14): 1567–1593

    Article  CAS  Google Scholar 

  34. Pontikes Y, Machiels L, Onisei S, Pandelaers L, Geysen D, Jones P T, Blanpain B. Slags with a high Al and Fe content as precursors for inorganic polymers. Applied Clay Science, 2013, 73: 93–102

    Article  CAS  Google Scholar 

  35. Davidovits J A. Geopolymers: Inorganic polymeric new materials. Journal of Materials Education, 1994, 16(2–3): 91–139

    CAS  Google Scholar 

  36. Perera D S, Cashion J D, Blackford M G, Zhang Z, Vance E R. Fe speciation in geopolymers with Si/Al molar ratio of ~2. Journal of the European Ceramic Society, 2007, 27(7): 2697–2703

    Article  CAS  Google Scholar 

  37. Bell J L. Formation of an iron-based inorganic polymer (geopolymer). In: Proceedings of Mechanical Properties and Performance of Engineering Ceramics and Composites IV. Wiley: Hoboken, 2010, 301–312

    Google Scholar 

  38. Chen A, Zhao Z W, Jia X, Long S, Huo G, Chen X. Alkaline leaching Zn and its concomitant metals from refractory hemimorphite zinc oxide ore. Hydrometallurgy, 2009, 97(3–4): 228–232

    Article  CAS  Google Scholar 

  39. Puligilla S. Understanding the role of slag on geopolymer hardening and microstructural development. Dissertation for the Master Degree. Urbana: University of Illinois, 2011, 84

    Google Scholar 

  40. Provis J L. Modelling the formation of geopolymers. Dissertation for the Doctoral Degree. Australia: University of Melbourne, 2006, 282

    Google Scholar 

  41. Williams R P, Hart R D, van Riessen A. Quantification of the extent of reaction of metakaolin-based geopolymers using X-ray diffraction, scanning electron microscopy, and energy-dispersive spectroscopy. Journal of the American Ceramic Society, 2011, 94(8): 2663–2670

    Article  CAS  Google Scholar 

  42. Mihailova I, Mehandjiev D. Characterization of fayalite from copper slags. Journal of the University of Chemical Technology and Metallurgy, 2010, 45(3): 317–326

    CAS  Google Scholar 

  43. Lappi S E, Smith B, Franzen S. Infrared spectra of H2 16O, H2 18O and D2O in the liquid phase by single-pass attenuated total internal reflection spectroscopy. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 2004, 60(11): 2611–2619

    Article  Google Scholar 

  44. Hanna R, Su G J. Infrared absorption spectra of sodium silicate glasses from 4 to 40 microns. Journal of the American Ceramic Society, 1964, 47(12): 597–601

    Article  CAS  Google Scholar 

  45. Gervais F, Blin A, Massiot D, Coutures J P, Chopinet M H, Naudin F. Infrared reflectivity spectroscopy of silicate glasses. Journal of Non-Crystalline Solids, 1987, 89(3): 384–401

    Article  CAS  Google Scholar 

  46. Kuenzel C, Vandeperre L J, Donatello S, Boccaccini A R, Cheeseman C. Ambient Temperature Drying Shrinkage and Cracking in Metakaolin-Based Geopolymers. Journal of the American Ceramic Society, 2012, 95(10): 3270–3277

    Article  CAS  Google Scholar 

  47. Ismail I, Bernal S A, Provis J L, Hamdan S, van Deventer J S J. Drying-induced changes in the structure of alkali-activated pastes. Journal of Materials Science, 2013, 48(9): 3566–3577

    Article  CAS  Google Scholar 

  48. European Committee for Standardisation. EN 197-1. Norm for Cement. Part 1, 2000

  49. de Groot G J. Development of a leaching method for the determination of the environmental quality of concrete. European ComissionFinal Report. EUR 17869 EN, 1997

  50. Van der Sloot H A. Development of horizontally standardized leaching tests for construction materials: A material based or release based approach? Identical leaching mechanisms for different materials. Report ECN-C-04-060, 2004

    Google Scholar 

  51. Dell’Orso M, Mangialardi T, Paolini A E, Piga L. Evaluation of the leachability of heavy metals from cement-based materials. Journal of Hazardous Materials, 2012, 227-228: 1–8

    Article  Google Scholar 

Download references

Acknowledgements

The EPMA-WDS work has been feasible due to the support of the Hercules Foundation (project ZW09-09).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiannis Pontikes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iacobescu, R.I., Cappuyns, V., Geens, T. et al. The influence of curing conditions on the mechanical properties and leaching of inorganic polymers made of fayalitic slag. Front. Chem. Sci. Eng. 11, 317–327 (2017). https://doi.org/10.1007/s11705-017-1622-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1622-6

Keywords

Navigation