Worwood M, Cook J D. Serum ferritin. Critical Reviews in Clinical Laboratory Sciences, 1979, 10(2): 171–204
CAS
Article
PubMed
Google Scholar
Meldrum F C, Heywood B R, Mann S. Magnetoferritin: In vitro synthesis of a novel magnetic protein. Science, 1992, 257(5069): 522–523
CAS
Article
PubMed
Google Scholar
Zeth K, Hoiczyk E, Okuda M. Ferroxidase-mediated iron oxide biomineralization: Novel pathways to multifunctional nanoparticles. Trends in Biochemical Sciences, 2016, 41(2): 190–203
CAS
Article
PubMed
Google Scholar
Chasteen N D, Harrison P M. Mineralization in ferritin: An efficient means of iron storage. Journal of Structural Biology, 1999, 126(3): 182–194
CAS
Article
PubMed
Google Scholar
Uchida M, Kang S, Reichhardt C, Harlen K, Douglas T. The ferritin superfamily: Supramolecular templates for materials synthesis. Biochimica et Biophysica Acta, 2010, 1800(8): 834–845
CAS
Article
PubMed
Google Scholar
Bulte J W, Douglas T, Mann S, Frankel R B, Moskowitz B M, Brooks R A, Baumgarner C D, Vymazal J, Strub M P, Frank J A. Magnetoferritin: Characterization of a novel superparamagnetic MR contrast agent. Journal of Magnetic Resonance Imaging, 1994, 4(3): 497–505
CAS
Article
PubMed
Google Scholar
Uchida M, Flenniken M L, Allen M, Willits D A, Crowley B E, Brumfield S, Willis A F, Jackiw L, Jutila M, Young M J, Douglas T. Targeting of cancer cells with ferrimagnetic ferritin cage nanoparticles. Journal of the American Chemical Society, 2006, 128(51): 16626–16633
CAS
Article
PubMed
Google Scholar
Okuda M, Iwahori K, Yamashita I, Yoshimura H. Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin. Biotechnology and Bioengineering, 2003, 84(2): 187–194
CAS
Article
PubMed
Google Scholar
Galvez N, Sanchez P, Dominguez-Vera J M. Preparation of Cu and CuFe prussian blue derivative nanoparticles using the apoferritin cavity as nanoreactor. Dalton Transactions (Cambridge, England), 2005, 15(15): 2492–2494
Article
CAS
Google Scholar
Jeong G H, Yamazaki A, Suzuki S, Yoshimura H, Kobayashi Y, Homma Y. Cobalt-filled apoferritin for suspended single-walled carbon nanotube growth with narrow diameter distribution. Journal of the American Chemical Society, 2005, 127(23): 8238–8239
CAS
Article
PubMed
Google Scholar
Fan R, Chew S W, Cheong V V, Orner B P. Fabrication of gold nanoparticles inside unmodified horse spleen apoferritin. Small, 2010, 6(14): 1483–1487
CAS
Article
PubMed
Google Scholar
Zhen Z, Tang W, Chen H, Lin X, Todd T, Wang G, Cowger T, Chen X, Xie J. RGD-modified apoferritin nanoparticles for efficient drug delivery to tumors. ACS Nano, 2013, 7(6): 4830–4837
CAS
Article
PubMed Central
PubMed
Google Scholar
Zhen Z, Tang W, Guo C, Chen H, Lin X, Liu G, Fei B, Chen X, Xu B, Xie J. Ferritin nanocages to encapsulate and deliver photosensitizers for efficient photodynamic therapy against cancer. ACS Nano, 2013, 7(8): 6988–6996
CAS
Article
PubMed
Google Scholar
Tian Y, Yan X, Saha M L, Niu Z, Stang P J. Hierarchical selfassembly of responsive organoplatinum(ii) metallacycle-TMV complexes with turn-on fluorescence. Journal of the American Chemical Society, 2016, 138(37): 12033–12036
CAS
Article
PubMed
Google Scholar
Harrison P M, Arosio P. The ferritins: Molecular properties, iron storage function and cellular regulation. Biochimica et Biophysica Acta, 1996, 1275(3): 161–203
Article
PubMed
Google Scholar
Lin X, Xie J, Niu G, Zhang F, Gao H, Yang M, Quan Q, Aronova M A, Zhang G, Lee S, et al. Chimeric ferritin nanocages for multiple function loading and multimodal imaging. Nano Letters, 2011, 11(2): 814–819
CAS
Article
PubMed Central
PubMed
Google Scholar
Yamashita I, Iwahori K, Kumagai S. Ferritin in the field of nanodevices. Biochimica et Biophysica Acta, 2010, 1800(8): 846–857
CAS
Article
PubMed
Google Scholar
Jolley C C, Uchida M, Reichhardt C, Harrington R, Kang S, Klem M T, Parise J B, Douglas T. Size and crystallinity in proteintemplated inorganic nanoparticles. Chemistry of Materials, 2010, 22(16): 4612–4618
CAS
Article
PubMed Central
PubMed
Google Scholar
Zhang L, Swift J, Butts C A, Yerubandi V, Dmochowski I J. Structure and activity of apoferritin-stabilized gold nanoparticles. Journal of Inorganic Biochemistry, 2007, 101(11-12): 1719–1729
CAS
Article
PubMed
Google Scholar
Rother M, Nussbaumer M G, Renggli K, Bruns N. Protein cages and synthetic polymers: A fruitful symbiosis for drug delivery applications, bionanotechnology and materials science. Chemical Society Reviews, 2016, 45(22): 6213–6249
CAS
Article
PubMed
Google Scholar
Ghirlando R, Mutskova R, Schwartz C. Enrichment and characterization of ferritin for nanomaterial applications. Nanotechnology, 2016, 27(4): 045102
Article
CAS
PubMed
Google Scholar
Konijn A, Meyron-Holtz E, Levy R, Ben-Bassat H, Matzner Y. Specific binding of placental acidic isoferritin to cells of the T-cell line HD-MAR. FEBS Letters, 1990, 263(2): 229–232
CAS
Article
PubMed
Google Scholar
Bretscher M S, Thomson J N. Distribution of ferritin receptors and coated pits on giant Hela cells. EMBO Journal, 1983, 2(4): 599–603
CAS
PubMed Central
Article
PubMed
Google Scholar
Lei Y, Hamada Y, Li J, Cong L, Wang N, Li Y, Zheng W, Jiang X. Targeted tumor delivery and controlled release of neuronal drugs with ferritin nanoparticles to regulate pancreatic cancer progression. Journal of Controlled Release, 2016, 232: 131–142
CAS
Article
PubMed
Google Scholar
Zhao Y, Liang M, Li X, Fan K, Xiao J, Li Y, Shi H, Wang F, Choi H S, Cheng D, et al. Bioengineered magnetoferritin nanoprobes for single-dose nuclear-magnetic resonance tumor imaging. ACS Nano, 2016, 10(4): 4184–4191
CAS
Article
PubMed
Google Scholar
Adams P C, Powell L W, Halliday J W. Isolation of a human hepatic ferritin receptor. Hepatology (Baltimore, MD.), 1988, 8(4): 719–721
CAS
Article
Google Scholar
Chen X. Multimodality imaging of tumor integrin alphavbeta3 expression. Mini-Reviews in Medicinal Chemistry, 2006, 6(2): 227–233
CAS
Article
PubMed
Google Scholar
Liu Y, Wang Z, Zhang H, Lang L, Ma Y, He Q, Lu N, Huang P, Song J, Liu Z, et al. A photothermally responsive nanoprobe for bioimaging based on edman degradation. Nanoscale, 2016, 8(20): 10553–10557
CAS
Article
PubMed Central
PubMed
Google Scholar
Kitagawa T, Kosuge H, Uchida M, Dua MM, Iida Y, Dalman R L, Douglas T, McConnell M V. Rgd-conjugated human ferritin nanoparticles for imaging vascular inflammation and angiogenesis in experimental carotid and aortic disease. Molecular Imaging & Biology, 2012, 14(3): 315–324
Article
Google Scholar
Choi H S, Nasr K, Alyabyev S, Feith D, Lee J H, Kim S H, Ashitate Y, Hyun H, Patonay G, Strekowski L, et al. Synthesis and in vivo fate of zwitterionic near—infrared fluorophores. Angewandte Chemie International Edition, 2011, 50(28): 6258–6263
CAS
Article
PubMed
Google Scholar
Agostinis P, Berg K, Cengel K A, Foster T H, Girotti A W, Gollnick S O, Hahn S M, Hamblin M R, Juzeniene A, Kessel D, et al. Photodynamic therapy of cancer: An update. CA: a Cancer Journal for Clinicians, 2011, 61(4): 250–281
Google Scholar
Ochsner M. Photophysical and photobiological processes in the photodynamic therapy of tumours. Journal of Photochemistry and Photobiology. B, Biology, 1997, 39(1): 1–18
CAS
Article
PubMed
Google Scholar
Brown S B, Brown E A, Walker I. The present and future role of photodynamic therapy in cancer treatment. Lancet Oncology, 2004, 5(8): 497–508
CAS
Article
PubMed
Google Scholar
Cairnduff F, Stringer M R, Hudson E J, Ash D V, Brown S B. Superficial photodynamic therapy with topical 5-aminolaevulinic acid for superficial primary and secondary skin cancer. British Journal of Cancer, 1994, 69(3): 605–608
CAS
Article
PubMed Central
PubMed
Google Scholar
Falvo E, Tremante E, Fraioli R, Leonetti C, Zamparelli C, Boffi A, Morea V, Ceci P, Giacomini P. Antibody-drug conjugates: Targeting melanoma with cisplatin encapsulated in protein-cage nanoparticles based on human ferritin. Nanoscale, 2013, 5(24): 12278–12285
CAS
Article
PubMed
Google Scholar
MacKie R. Melanoma prevention and early detection. British Medical Bulletin, 1995, 51(3): 570–583
CAS
Article
PubMed
Google Scholar
Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA: a Cancer Journal for Clinicians, 2012, 62(1): 10–29
Google Scholar
Greenlee R T, Murray T, Bolden S, Wingo P A. Cancer statistics, 2000. CA: a Cancer Journal for Clinicians, 2000, 50(1): 7–33
CAS
Google Scholar
Rigel D S, Carucci J A. Malignant melanoma: Prevention, early detection, and treatment in the 21st century. CA: a Cancer Journal for Clinicians, 2000, 50(4): 215–236
CAS
Google Scholar
Morgenstern D A, Asher R A, Fawcett J W. Chondroitin sulphate proteoglycans in the CNS injury response. Progress in Brain Research, 2002, 137: 313–332
CAS
Article
PubMed
Google Scholar
Eisenmann K M, McCarthy J B, Simpson M A, Keely P J, Guan J L, Tachibana K, Lim L, Manser E, Furcht L T, Iida J. Melanoma chondroitin sulphate proteoglycan regulates cell spreading through Cdc42, Ack-1 and p130cas. Nature Cell Biology, 1999, 1(8): 507–513
CAS
Article
PubMed
Google Scholar
Thon N, Haas C A, Rauch U, Merten T, Fässler R, Frotscher M, Deller T. The chondroitin sulphate proteoglycan brevican is upregulated by astrocytes after entorhinal cortex lesions in adult rats. European Journal of Neuroscience, 2000, 12(7): 2547–2558
CAS
Article
PubMed
Google Scholar
Levine J, Nishiyama A. The NG2 chondroitin sulfate proteoglycan: A multifunctional proteoglycan associated with immature cells. Perspectives on Developmental Neurobiology, 1996, 3(4): 245–259
CAS
PubMed
Google Scholar
Oohira A, Matsui F, Watanabe E, Kushima Y, Maeda N. Developmentally regulated expression of a brain specific species of chondroitin sulfate proteoglycan, neurocan, identified with a monoclonal antibody LG2 in the rat cerebrum. Neuroscience, 1994, 60(1): 145–157
CAS
Article
PubMed
Google Scholar
Levine J M, Stallcup W B. Plasticity of developing cerebellar cells in vitro studied with antibodies against the NG2 antigen. Journal of Neuroscience, 1987, 7(9): 2721–2731
CAS
Article
PubMed
Google Scholar
Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. Journal of Controlled Release, 2000, 65(1): 271–284
CAS
Article
PubMed
Google Scholar
Mamo T, Poland G A. Nanovaccinology: The next generation of vaccines meets 21st century materials science and engineering. Vaccine, 2012, 30(47): 6609–6611
CAS
Article
PubMed
Google Scholar
des Rieux A, Fievez V, Garinot M, Schneider Y J, Préat V. Nanoparticles as potential oral delivery systems of proteins and vaccines: A mechanistic approach. Journal of Controlled Release, 2006, 116(1): 1–27
Article
CAS
PubMed
Google Scholar
Singh M, Chakrapani A, O’Hagan D. Nanoparticles and microparticles as vaccine-delivery systems. Expert Review of Vaccines, 2007, 6(5): 797–808
CAS
Article
PubMed
Google Scholar
Oyewumi M O, Kumar A, Cui Z. Nano-microparticles as immune adjuvants: Correlating particle sizes and the resultant immune responses. Expert Review of Vaccines, 2010, 9(9): 1095–1107
CAS
Article
PubMed Central
PubMed
Google Scholar
Zhao L, Seth A, Wibowo N, Zhao C X, Mitter N, Yu C, Middelberg A P. Nanoparticle vaccines. Vaccine, 2014, 32(3): 327–337
Article
PubMed
Google Scholar
Zhao K, Chen G, Shi X, Gao T, Li W, Zhao Y, Zhang F, Wu J, Cui X, Wang Y F. Preparation and efficacy of a live newcastle disease virus vaccine encapsulated in chitosan nanoparticles. PLoS One, 2012, 7(12): e53314
CAS
Article
PubMed Central
PubMed
Google Scholar
Borges O, Cordeiro-da- Silva A, Tavares J, Santarém N, de Sousa A, Borchard G, Junginger H E. Immune response by nasal delivery of hepatitis B surface antigen and codelivery of a CpG ODN in alginate coated chitosan nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 2008, 69(2): 405–416
CAS
Article
PubMed
Google Scholar
Nochi T, Yuki Y, Takahashi H, Sawada S, Mejima M, Kohda T, Harada N, Kong I G, Sato A, Kataoka N, et al. Nanogel antigenic protein-delivery system for adjuvant-free intranasal vaccines. Nature Materials, 2010, 9(7): 572–578
CAS
Article
PubMed
Google Scholar
Stone J W, Thornburg N J, Blum D L, Kuhn S J, Wright D W, Crowe J E Jr. Gold nanorod vaccine for respiratory syncytial virus. Nanotechnology, 2013, 24(29): 295102
Article
PubMed Central
CAS
PubMed
Google Scholar
Wang T, Zou M, Jiang H, Ji Z, Gao P, Cheng G. Synthesis of a novel kind of carbon nanoparticle with large mesopores and macropores and its application as an oral vaccine adjuvant. European Journal of Pharmaceutical Sciences, 2011, 44(5): 653–659
CAS
Article
PubMed
Google Scholar
Glück R, Moser C, Metcalfe I C. Influenza virosomes as an efficient system for adjuvanted vaccine delivery. Expert Opinion on Biological Therapy, 2004, 4(7): 1139–1145
Article
PubMed
Google Scholar
Zhu F C, Zhang J, Zhang X F, Zhou C, Wang Z Z, Huang S J, Wang H, Yang C L, Jiang HM, Cai J P, et al. Efficacy and safety of a recombinant hepatitise vaccine in healthy adults: A large-scale, randomised, double-blind placebo-controlled, phase 3 trial. Lancet, 2010, 376(9744): 895–902
CAS
Article
PubMed
Google Scholar
Sliepen K, Ozorowski G, Burger J A, van Montfort T, Stunnenberg M, La Branche C, Montefiori D C, Moore J P, Ward A B, Sanders R W. Presenting native-like HIV-1 envelope trimers on ferritin nanoparticles improves their immunogenicity. Retrovirology, 2015, 12(82): 15–21
Google Scholar
Champion C I, Kickhoefer V A, Liu G, Moniz R J, Freed A S, Bergmann L L, Vaccari D, Raval-Fernandes S, Chan AM, Rome L H, Kelly K A. A vault nanoparticle vaccine induces protective mucosal immunity. PLoS One, 2009, 4(4): e5409
Article
PubMed Central
CAS
PubMed
Google Scholar
Kanekiyo M, Wei C J, Yassine H M, McTamney P M, Boyington J C, Whittle J R, Rao S S, Kong W P, Wang L, Nabel G J. Selfassembling influenza nanoparticle vaccines elicit broadly neutralizing H1N1 antibodies. Nature, 2013, 499(7456): 102–106
CAS
Article
PubMed
PubMed Central
Google Scholar
Cho K J, Shin H J, Lee J H, Kim K J, Park S S, Lee Y, Lee C, Park S S, Kim K H. The crystal structure of ferritin from helicobacter pylori reveals unusual conformational changes for iron uptake. Journal of Molecular Biology, 2009, 390(1): 83–98
CAS
Article
PubMed
Google Scholar
Steinman R M. Decisions about dendritic cells: Past, present, and future. Annual Review of Immunology, 2012, 30(1): 1–22
CAS
Article
PubMed
Google Scholar
Gilboa E. DC-based cancer vaccines. Journal of Clinical Investigation, 2007, 117(5): 1195–1203
CAS
Article
PubMed Central
PubMed
Google Scholar
Aarntzen E, Figdor C, Adema G, Punt C, De Vries I. Dendritic cell vaccination and immune monitoring. Cancer Immunology, Immunotherapy, 2008, 57(10): 1559–1568
CAS
Article
PubMed Central
PubMed
Google Scholar
Han J A, Kang Y J, Shin C, Ra J S, Shin H H, Hong S Y, Do Y, Kang S. Ferritin protein cage nanoparticles as versatile antigen delivery nanoplatforms for dendritic cell (DC)-based vaccine development. Nanomedicine; Nanotechnology, Biology, and Medicine, 2013, 10(3): 561–569
Article
CAS
PubMed
Google Scholar
Shimonkevitz R, Colon S, Kappler J W, Marrack P, Grey H M. Antigen recognition by H-2-restricted T cells. II. A tryptic ovalbumin peptide that substitutes for processed antigen. Journal of Immunology (Baltimore, MD: 1950), 1984, 133(4): 2067–2074
CAS
Google Scholar
Liu D, Wang Z, Jin A, Huang X, Sun X, Wang F, Yan Q, Ge S, Xia N, Niu G, Liu G, Hight Walker A R, Chen X. Acetylcholinesterase— catalyzed hydrolysis allows ultrasensitive detection of pathogens with the naked eye. Angewandte Chemie International Edition in English, 2013, 52(52): 14065–14069
CAS
Article
Google Scholar
Lee S H, Lee H, Park J S, Choi H, Han K Y, Seo H S, Ahn K Y, Han S S, Cho Y, Lee K H, et al. A novel approach to ultrasensitive diagnosis using supramolecular protein nanoparticles. FASEB Journal, 2007, 21(7): 1324–1334
CAS
Article
PubMed
Google Scholar
Abbaspour A, Noori A. Electrochemical detection of individual single nucleotide polymorphisms using monobase-modified apoferritin- encapsulated nanoparticles. Biosensors & Bioelectronics, 2012, 37(1): 11–18
CAS
Article
Google Scholar
Tang Z, Wu H, Zhang Y, Li Z, Lin Y. Enzyme-mimic activity of ferric nano-core residing in ferritin and its biosensing applications. Analytical Chemistry, 2011, 83(22): 8611–8616
CAS
Article
PubMed
Google Scholar
Men D, Zhang T T, Hou LW, Zhou J, Zhang Z P, Shi Y Y, Zhang J L, Cui Z Q, Deng J Y, Wang D B, et al. Self-assembly of ferritin nanoparticles into an enzyme nanocomposite with tunable size for ultrasensitive immunoassay. ACS Nano, 2015, 9(11): 10852–10860
CAS
Article
PubMed
Google Scholar
Liu G, Wang J, Wu H, Lin Y. Versatile apoferritin nanoparticle labels for assay of protein. Analytical Chemistry, 2006, 78(21): 7417–7423
CAS
Article
PubMed
Google Scholar
Liu G, Wu H, Wang J, Lin Y. Apoferritin-templated synthesis of metal phosphate nanoparticle labels for electrochemical immunoassay. Small, 2006, 2(10): 1139–1143
CAS
Article
PubMed
Google Scholar
Beutler B, Cerami A. Cachectin and tumour necrosis factor as two sides of the same biological coin. Nature, 1986, 320(6063): 584–588
CAS
Article
PubMed
Google Scholar
Scuderi P, Lam K, Ryan K, Petersen E, Sterling K, Finley P, Ray C G, Slymen D, Salmon S. Raised serum levels of tumour necrosis factor in parasitic infections. Lancet, 1986, 328(8520): 1364–1365
Article
Google Scholar
Yu F, Li G, Qu B, Cao W. Electrochemical detection of DNA hybridization based on signal DNA probe modified with Au and apoferritin nanoparticles. Biosensors & Bioelectronics, 2010, 26(3): 1114–1117
CAS
Article
Google Scholar
Li L, Fang C J, Ryan J C, Niemi E C, Lebrón J A, Björkman P J, Arase H, Torti F M, Torti S V, Nakamura M C, et al. Binding and uptake of H-ferritin are mediated by human transferrin receptor-1. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(8): 3505–3510
CAS
Article
PubMed Central
PubMed
Google Scholar
Fan K, Cao C, Pan Y, Lu D, Yang D, Feng J, Song L, Liang M, Yan X. Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nature Nanotechnology, 2012, 7(7): 459–464
CAS
Article
PubMed
Google Scholar
Lee E J, Ahn K Y, Lee J H, Park J S, Song J A, Sim S J, Lee E B, Cha Y J, Lee J. A novel bioassay platform using ferritin-based nanoprobe hydrogel. Advanced Materials, 2012, 24(35): 4739–4744
CAS
Article
PubMed
Google Scholar
Zhao J, Liu M, Zhang Y, Li H, Lin Y, Yao S. Apoferritin protein nanoparticles dually-labeled with aptamer and HRP as a sensing probe for thrombin detection. Analytica Chimica Acta, 2012, 1(759): 53–60
Google Scholar
John A, Tuszynski G. The role of matrix metalloproteinases in tumor angiogenesis and tumor metastasis. Pathology Oncology Research, 2001, 7(1): 14–23
CAS
Article
PubMed
Google Scholar
Stetler-Stevenson W G, Aznavoorian S, Liotta L A. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annual Review of Cell Biology, 1993, 9(1): 541–573
CAS
Article
PubMed
Google Scholar
Malemud C J. Matrix metalloproteinases (MMPs) in health and disease: An overview. Frontiers in Bioscience: A Journal and Virtual Library, 2006, 11: 1696
CAS
Article
Google Scholar
Lin X, Xie J, Zhu L, Lee S, Niu G, Ma Y, Kim K, Chen X. Hybrid ferritin nanoparticles as activatable probes for tumor imaging. Angewandte Chemie International Edition in English, 2011, 50(7): 1569–1572
CAS
Article
Google Scholar
Zhu L, Ma Y, Kiesewetter D O, Wang Y, Lang L, Lee S, Niu G, Chen X. Rational design of matrix metalloproteinase-13 activatable probes for enhanced specificity. ACS Chemical Biology, 2013, 9(2): 510–516
Article
PubMed Central
CAS
PubMed
Google Scholar
Zhu L, Xie J, Swierczewska M, Zhang F, Quan Q, Ma Y, Fang X, Kim K, Lee S, Chen X. Real-time video imaging of protease expression in vivo. Theranostics, 2011, 1: 18–27
CAS
Article
PubMed Central
PubMed
Google Scholar
Wang J, Zhang L, Chen M, Gao S, Zhu L. Activatable ferritin nanocomplex for real-time monitoring of caspase-3 activation during photodynamic therapy. ACS Applied Materials & Interfaces, 2015, 7(41): 23248–23256
CAS
Article
Google Scholar
Choi S H, Na H B, Park Y I, An K, Kwon S G, Jang Y, Park M H, Moon J, Son J S, Song I C, et al. Simple and generalized synthesis of oxide-metal heterostructured nanoparticles and their applications in multimodal biomedical probes. Journal of the American Chemical Society, 2008, 130(46): 15573–15580
CAS
Article
PubMed
Google Scholar
Wang H, Cao F, De A, Cao Y, Contag C, Gambhir S S, Wu J C, Chen X. Trafficking mesenchymal stem cell engraftment and differentiation in tumor-bearing mice by bioluminescence imaging. Stem Cells (Dayton, OH), 2009, 27(7): 1548–1558
CAS
Article
Google Scholar
Xu C, Yuan Z, Kohler N, Kim J, Chung M A, Sun S. Fept nanoparticles as an Fe reservoir for controlled Fe release and tumor inhibition. Journal of the American Chemical Society, 2009, 131(42): 15346–15351
CAS
Article
PubMed Central
PubMed
Google Scholar
Bhirde A, Xie J, Swierczewska M, Chen X. Nanoparticles for cell labeling. Nanoscale, 2011, 3(1): 142–153
CAS
Article
PubMed
Google Scholar
Terashima M, Uchida M, Kosuge H, Tsao P S, Young MJ, Conolly S M, Douglas T, McConnell M V. Human ferritin cages for imaging vascular macrophages. Biomaterials, 2011, 32(5): 1430–1437
CAS
Article
PubMed
Google Scholar
Mills P H, Ahrens E T. Theoretical MRI contrast model for exogenous T2 agents. Magnetic Resonance in Medicine, 2007, 57(2): 442–447
Article
PubMed
Google Scholar
Charlton J R, Pearl V M, Denotti A R, Lee J B, Swaminathan S, Scindia Y M, Charlton N P, Baldelomar E J, Beeman S C, Bennett K M. Biocompatibility of ferritin-based nanoparticles as targeted mri contrast agents. Nanomedicine; Nanotechnology, Biology, and Medicine, 2016, 12(6): 1735–1745
CAS
Article
PubMed Central
PubMed
Google Scholar
Domínguez-Vera J M, Fernandez B, Galvez N. Native and synthetic ferritins for nanobiomedical applications: Recent advances and new perspectives. Future Medicinal Chemistry, 2010, 2(4): 609–618
Article
PubMed
Google Scholar
Maraloiu V A, Appaix F, Broisat A, Le Guellec D, Teodorescu V S, Ghezzi C, van der Sanden B, Blanchin M G. Multiscale investigation of uspio nanoparticles in atherosclerotic plaques and their catabolism and storage in vivo. Nanomedicine; Nanotechnology, Biology, and Medicine, 2016, 12(1): 191–200
CAS
Article
PubMed
Google Scholar
Xie H, Cheng Y C, Kokeny P, Liu S, Hsieh C Y, Haacke E M, Palihawadana Arachchige M, Lawes G. A quantitative study of susceptibility and additional frequency shift of three common materials in MRI. Magnetic Resonance in Medicine, 2016, 76(4): 1263–1269
Article
PubMed
Google Scholar
Choi S H, Cho H R, Kim H S, Kim Y H, Kang KW, Kim H, Moon W K. Imaging and quantification of metastatic melanoma cells in lymph nodes with a ferritin MR reporter in living mice. NMR in Biomedicine, 2012, 25(5): 737–745
Article
PubMed
Google Scholar
Fan K, Gao L, Yan X. Human ferritin for tumor detection and therapy. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 2013, 5(4): 287–298
CAS
Article
PubMed
Google Scholar
Schenck J F, Zimmerman E A. High-field magnetic resonance imaging of brain iron: Birth of a biomarker? NMR in Biomedicine, 2004, 17(7): 433–445
CAS
Article
PubMed
Google Scholar
Christoforidis A, Haritandi A, Tsitouridis I, Tsatra I, Tsantali H, Karyda S, Dimitriadis A S, Athanassiou-Metaxa M. Correlative study of iron accumulation in liver, myocardium, and pituitary assessed with MRI in young thalassemic patients. Journal of Pediatric Hematology/Oncology, 2006, 28(5): 311–315
CAS
Article
PubMed
Google Scholar
Bartzokis G, Cummings J L, Markham C H, Marmarelis P Z, Treciokas L J, Tishler T A, Marder S R, Mintz J. MRI evaluation of brain iron in earlier-and later-onset Parkinson’s disease and normal subjects. Magnetic Resonance Imaging, 1999, 17(2): 213–222
CAS
Article
PubMed
Google Scholar
Bartzokis G, Tishler T. MRI evaluation of basal ganglia ferritin iron and neurotoxicity in Alzheimer’s and Huntingon’s disease. Cellular and Molecular Biology, 2000, 46(4): 821–833
CAS
PubMed
Google Scholar
Bennett K M, Zhou H, Sumner J P, Dodd S J, Bouraoud N, Doi K, Star R A, Koretsky A P. MRI of the basement membrane using charged nanoparticles as contrast agents. Magnetic Resonance in Medicine, 2008, 60(3): 564–574
Article
PubMed Central
PubMed
Google Scholar
Kim J W, Choi S H, Lillehei P T, Chu S H, King G C, Watt G D. Cobalt oxide hollow nanoparticles derived by bio-templating. Chemical Communications, 2005, (32): 4101–4103
Article
CAS
Google Scholar
Deng Q Y, Yang B, Wang J F, Whiteley C G, Wang X N. Biological synthesis of platinum nanoparticles with apoferritin. Biotechnology Letters, 2009, 31(10): 1505–1509
CAS
Article
PubMed
Google Scholar
Sun C, Yang H, Yuan Y, Tian X, Wang L, Guo Y, Xu L, Lei J, Gao N, Anderson G J, et al. Controlling assembly of paired gold clusters within apoferritin nanoreactor for in vivo kidney targeting and biomedical imaging. Journal of the American Chemical Society, 2011, 133(22): 8617–8624
CAS
Article
PubMed
Google Scholar
Uchida M, Terashima M, Cunningham C H, Suzuki Y, Willits D A, Willis A F, Yang P C, Tsao P S, McConnell M V, Young M J, et al. A human ferritin iron oxide nano-composite magnetic resonance contrast agent. Magnetic Resonance in Medicine, 2008, 60(5): 1073–1081
CAS
Article
PubMed
Google Scholar
Jezierska A, Motyl T. Matrix metalloproteinase-2 involvement in breast cancer progression: A mini-review. Medical Science Monitor, 2009, 15(2): RA32–40
CAS
PubMed
Google Scholar
Ravanti L, Kähäri V. Matrix metalloproteinases in wound repair. International Journal of Molecular Medicine, 2000, 6(4): 391–798
CAS
PubMed
Google Scholar
Matsumura S, Aoki I, Saga T, Shiba K. A tumor-environmentresponsive nanocarrier that evolves its surface properties upon sensing matrix metalloproteinase-2 and initiates agglomeration to enhance t(2) relaxivity for magnetic resonance imaging. Molecular Pharmaceutics, 2011, 8(5): 1970–1974
CAS
Article
PubMed
Google Scholar
Makino A, Harada H, Okada T, Kimura H, Amano H, Saji H, Hiraoka M, Kimura S. Effective encapsulation of a new cationic gadolinium chelate into apoferritin and its evaluation as an MRI contrast agent. Nanomedicine; Nanotechnology, Biology, and Medicine, 2011, 7(5): 638–646
CAS
Article
PubMed
Google Scholar
Sanchez P, Valero E, Galvez N, Dominguez-Vera J M, Marinone M, Poletti G, Corti M, Lascialfari A. MRI relaxation properties of water-soluble apoferritin-encapsulated gadolinium oxide-hydroxide nanoparticles. Dalton Transactions (Cambridge, England), 2009, (5): 800–804
Article
Google Scholar
Lee S, Chen X. Dual-modality probes for in vivo molecular imaging. Molecular Imaging, 2009, 8(2): 87–100
CAS
Article
PubMed
Google Scholar
Cai W, Chen X. Multimodality molecular imaging of tumor angiogenesis. Journal of Nuclear Medicine, 2008, 49(Suppl 2): 113S–128S
CAS
Article
PubMed
Google Scholar
Cai W, Niu G, Chen X. Multimodality imaging of the HER-kinase axis in cancer. European Journal of Nuclear Medicine and Molecular Imaging, 2008, 35(1): 186–208
Article
PubMed
Google Scholar
Wang Z, Huang P, Jacobson O, Wang Z, Liu Y, Lin L, Lin J, Lu N, Zhang H, Tian R, et al. Biomineralization-inspired synthesis of copper sulfide-ferritin nanocages as cancer theranostics. ACS Nano, 2016, 10(3): 3453–3460
CAS
Article
PubMed Central
PubMed
Google Scholar
Xu G, Zhao L, He Z. Performance of whole-body pet/ct for the detection of distant malignancies in various cancers: A systematic review and meta-analysis. Journal of Nuclear Medicine, 2012, 53(12): 1847–1854
Article
PubMed
Google Scholar
Ford E C, Herman J, Yorke E, Wahl R L. 18F-FDG PET/CT for image-guided and intensity-modulated radiotherapy. Journal of Nuclear Medicine, 2009, 50(10): 1655–1665
Article
PubMed
Google Scholar
Vach W, Hoilund-Carlsen P F, Gerke O, Weber W A. Generating evidence for clinical benefit of PET/CT in diagnosing cancer patients. Journal of Nuclear Medicine, 2011, 52(Suppl 2): 77S–85S
Article
PubMed
Google Scholar
Cai W, Sam Gambhir S, Chen X. Multimodality tumor imaging targeting integrin alphavbeta3. BioTechniques, 2005, 39(6 Suppl): S14–S25
Article
PubMed
Google Scholar
Vikram D S, Zweier J L, Kuppusamy P. Methods for noninvasive imaging of tissue hypoxia. Antioxidants & Redox Signaling, 2007, 9(10): 1745–1756
CAS
Article
Google Scholar
Huang P, Lin J, Li W, Rong P, Wang Z, Wang S, Wang X, Sun X, Aronova M, Niu G, et al. Biodegradable gold nanovesicles with an ultrastrong plasmonic coupling effect for photoacoustic imaging and photothermal therapy. Angewandte Chemie International Edition, 2013, 52(52): 13958–13964
CAS
Article
PubMed
Google Scholar
Yang M, Fan Q, Zhang R, Cheng K, Yan J, Pan D, Ma X, Lu A, Cheng Z. Dragon fruit-like biocage as an iron trapping nanoplatform for high efficiency targeted cancer multimodality imaging. Biomaterials, 2015, 69: 30–37
CAS
Article
PubMed Central
PubMed
Google Scholar
Vannucci L, Falvo E, Failla C M, Carbo M, Fornara M, Canese R, Cecchetti S, Rajsiglova L, Stakheev D, Krizan J, et al. In vivo targeting of cutaneous melanoma using an melanoma stimulating hormone-engineered human protein cage with fluorophore and magnetic resonance imaging tracers. Journal of Biomedical Nanotechnology, 2015, 11(1): 81–92
CAS
Article
PubMed
Google Scholar
Liang M, Fan K, Zhou M, Duan D, Zheng J, Yang D, Feng J, Yan X. H-ferritin-nanocaged doxorubicin nanoparticles specifically target and kill tumors with a single-dose injection. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(41): 14900–14905
CAS
Article
PubMed Central
PubMed
Google Scholar