Genome reprogramming for synthetic biology

  • Kylie Standage-Beier
  • Xiao Wang
Review Article


The ability to go from a digitized DNA sequence to a predictable biological function is central to synthetic biology. Genome engineering tools facilitate rewriting and implementation of engineered DNA sequences. Recent development of new programmable tools to reengineer genomes has spurred myriad advances in synthetic biology. Tools such as clustered regularly interspace short palindromic repeats enable RNA-guided rational redesign of organisms and implementation of synthetic gene systems. New directed evolution methods generate organisms with radically restructured genomes. These restructured organisms have useful new phenotypes for biotechnology, such as bacteriophage resistance and increased genetic stability. Advanced DNA synthesis and assembly methods have also enabled the construction of fully synthetic organisms, such as J. Craig Venter Institute (JCVI)-syn 3.0. Here we summarize the recent advances in programmable genome engineering tools.


CRISPR genome engineering synthetic biology rational design 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Work by the Xiao Wang laboratory has been supported by National Institutes of Health Grant GM106081.


  1. 1.
    Faucon P C, Pardee K, Kumar R M, Li H, Loh Y H, Wang X. Gene networks of fully connected triads with complete auto-activation enable multistability and stepwise stochastic transitions. PLoS One, 2014, 9(7): e102873CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wu F, Menn D J, Wang X. Quorum-sensing crosstalk-driven synthetic circuits: From unimodality to trimodality. Chemistry & Biology, 2014, 21(12): 1629–1638CrossRefGoogle Scholar
  3. 3.
    Wang L Z, Wu F, Flores K, Lai Y C, Wang X. Build to understand: Synthetic approaches to biology. Integrative Biology, 2016, 8(4): 394–408CrossRefPubMedGoogle Scholar
  4. 4.
    Brophy J A N, Voigt C A. Principles of genetic circuit design. Nature Methods, 2014, 11(5): 508–520CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gardner T S, Cantor C R, Collins J J. Construction of a genetic toggle switch in Escherichia coli. Nature, 2000, 403(6767): 339–342CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Litcofsky K D, Afeyan R B, Krom R J, Khalil A S, Collins J J. Iterative plug-and-play methodology for constructing and modifying synthetic gene networks. Nature Methods, 2012, 9(11): 1077–1080CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Ellis T, Wang X, Collins J J. Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nature Biotechnology, 2009, 27(5): 465–471CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Wu M, Su R Q, Li X, Ellis T, Lai Y C, Wang X. Engineering of regulated stochastic cell fate determination. Proceedings of the National Academy of Sciences, 2013, 201305423Google Scholar
  9. 9.
    Hutchison C A, Chuang R Y, Noskov V N, Assad-Garcia N, Deerinck T J, Ellisman M H, Gill J, Kannan K, Karas B J, Ma L, et al. Design and synthesis of a minimal bacterial genome. Science, 2016, 351(6280): aad6253Google Scholar
  10. 10.
    Mojica F J M, Diez-Villasenor C, Garcia-Martinez J, Almendros C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 2009, 155(3): 733–740CrossRefPubMedGoogle Scholar
  11. 11.
    Brouns S J J, Jore M M, Lundgren M, Westra E R, Slijkhuis R J H, Snijders A P L, Dickman M J, Makarova K S, Koonin E V, van der Oost J. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 2008, 321(5891): 960–964CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Marraffini L A. CRISPR-Cas immunity in prokaryotes. Nature, 2015, 526(7571): 55–61CrossRefPubMedGoogle Scholar
  13. 13.
    Marraffini L A, Sontheimer E J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 2008, 322(5909): 1843–1845CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Makarova K S, Haft D H, Barrangou R, Brouns S J J, Charpentier E, Horvath P, Moineau S, Mojica F J M, Wolf Y I, Yakunin A F, et al. Evolution and classification of the CRISPR-Cas systems. Nature Reviews. Microbiology, 2011, 9(6): 467–477CrossRefPubMedGoogle Scholar
  15. 15.
    Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816–821CrossRefGoogle Scholar
  16. 16.
    Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819–823CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823–826CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Fu Y, Foden J A, Khayter C, Maeder M L, Reyon D, Joung J K, Sander J D. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 2013, 31(9): 822–826CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ran F A, Hsu P D, Lin C Y, Gootenberg J S, Konermann S, Trevino A E, Scott D A, Inoue A, Matoba S, Zhang Y, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013, 155(2): 479–480CrossRefGoogle Scholar
  20. 20.
    Tsai S Q, Wyvekens N, Khayter C, Foden J A, Thapar V, Reyon D, Goodwin M J, Aryee M J, Joung J K. Dimeric CRISPR RNAguided FokI nucleases for highly specific genome editing. Nature Biotechnology, 2014, 32(6): 569–576CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Guilinger J P, Thompson D B, Liu D R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nature Biotechnology, 2014, 32(6): 577–582CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Fu Y, Sander J D, Reyon D, Cascio V M, Joung J K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology, 2014, 32(3): 279–284CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kiani S, Chavez A, Tuttle M, Hall R N, Chari R, Ter-Ovanesyan D, Qian J, Pruitt B W, Beal J, Vora S, et al. Cas9 gRNA engineering for genome editing, activation and repression. Nature Methods, 2015, 12(11): 1051–1054CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Kiani S, Beal J, Ebrahimkhani M R, Huh J, Hall R N, Xie Z, Li Y, Weiss R. CRISPR transcriptional repression devices and layered circuits in mammalian cells. Nature Methods, 2014, 11(7): 723–726CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Slaymaker I M, Gao L, Zetsche B, Scott D A, Yan W X, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science, 2015, 351(6268): 84–88CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Kleinstiver B P, Pattanayak V, Prew M S, Tsai S Q, Nguyen N T, Zheng Z, Joung J K. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 2016, 529(7587): 490–495CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Kleinstiver B P, Prew M S, Tsai S Q, Topkar V V, Nguyen N T, Zheng Z, Gonzales A P W, Li Z, Peterson R T, Yeh J R J, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature, 2015, 523(7561): 481–485CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kleinstiver B P, Prew M S, Tsai S Q, Nguyen N T, Topkar V V, Zheng Z, Joung J K. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nature Biotechnology, 2015, 33(12): 1293–1298CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    He X, Tan C, Wang F, Wang Y, Zhou R, Cui D, You W, Zhao H, Ren J, Feng B. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Research, 2016, 44(9): e85CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Jiang W, Bikard D, Cox D, Zhang F, Marraffini L A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 2013, 31(3): 233–239CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kuhlman T E, Cox E C. Site-specific chromosomal integration of large synthetic constructs. Nucleic Acids Research, 2010, 38(6): e92CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Bassalo M C, Garst A D, Halweg-Edwards A L, Grau W C, Domaille D W, Mutalik V K, Arkin A P, Gill R T. Rapid and efficient one-step metabolic pathway integration in E. coli. ACS Synthetic Biology, 2016, 5(7): 561–568CrossRefPubMedGoogle Scholar
  33. 33.
    Standage-Beier K, Zhang Q, Wang X. Targeted large-scale deletion of bacterial genomes using CRISPR-nickases. ACS Synthetic Biology, 2015, 4(11): 1217–1225CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Li Q, Chen J, Minton N P, Zhang Y, Wen Z, Liu J, Yang H, Zeng Z, Ren X, Yang J, et al. CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnology Journal, 2016, 11(7): 961–972CrossRefPubMedGoogle Scholar
  35. 35.
    Wang Y, Zhang Z T, Seo S O, Choi K, Lu T, Jin Y S, Blaschek H P. Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system. Journal of Biotechnology, 2015, 200: 1–5CrossRefPubMedGoogle Scholar
  36. 36.
    Liao C, Seo S O, Celik V, Liu H, Kong W, Wang Y, Blaschek H, Jin Y S, Lu T. Integrated, systems metabolic picture of acetone-butanolethanol fermentation by Clostridium acetobutylicum. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(27): 8505–8510CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Mougiakos I, Bosma E F, de Vos W M, van Kranenburg R, van der Oost J. Next generation prokaryotic engineering: The CRISPR-Cas toolkit. Trends in Biotechnology, 2016, 34(7): 575–587CrossRefPubMedGoogle Scholar
  38. 38.
    Choi K R, Lee S Y. CRISPR technologies for bacterial systems: Current achievements and future directions. Biotechnology Advances, 2016, 34(7): 1180–1209CrossRefPubMedGoogle Scholar
  39. 39.
    Jiang W, Marraffini L A. CRISPR-Cas: New tools for genetic manipulations from bacterial immunity systems. Annual Review of Microbiology, 2015, 69(1): 209–228CrossRefPubMedGoogle Scholar
  40. 40.
    Doyon Y, McCammon J M, Miller J C, Faraji F, Ngo C, Katibah G E, Amora R, Hocking T D, Zhang L, Rebar E J, et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature Biotechnology, 2008, 26(6): 702–708CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    DiCarlo J E, Norville J E, Mali P, Rios X, Aach J, Church G M. Genome engineering in Saccharomyces cerevisiae using CRISPRCas systems. Nucleic Acids Research, 2013, 41(7): 4336–4343CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Bao Z, Xiao H, Liang J, Zhang L, Xiong X, Sun N, Si T, Zhao H. Homology-integrated CRISPR-Cas (HI-CRISPR) system for onestep multigene disruption in Saccharomyces cerevisiae. ACS Synthetic Biology, 2015, 4(5): 585–594CrossRefPubMedGoogle Scholar
  43. 43.
    Hao H, Wang X, Jia H, Yu M, Zhang X, Tang H, Zhang L. Large fragment deletion using a CRISPR/Cas9 system in Saccharomyces cerevisiae. Analytical Biochemistry, 2016, 509: 118–123CrossRefPubMedGoogle Scholar
  44. 44.
    Jakočiūnas T, Rajkumar A S, Zhang J, Arsovska D, Rodriguez A, Jendresen C B, Skjødt M L, Nielsen A T, Borodina I, Jensen M K, et al. CasEMBLR: Cas9-facilitated multiloci genomic integration of in vivo assembled DNA parts in saccharomyces cerevisiae. ACS Synthetic Biology, 2015, 4(11): 1226–1234CrossRefPubMedGoogle Scholar
  45. 45.
    Tsarmpopoulos I, Gourgues G, Blanchard A, Vashee S, Jores J, Lartigue C, Sirand-Pugnet P. In-yeast engineering of a bacterial genome using CRISPR/Cas9. ACS Synthetic Biology, 2016, 5(1): 104–109CrossRefPubMedGoogle Scholar
  46. 46.
    Kannan K, Tsvetanova B, Chuang R Y, Noskov V N, Assad-Garcia N, Ma L, Hutchison C A III, Smith H O, Glass J I, Merryman C, et al. One step engineering of the small-subunit ribosomal RNA using CRISPR/Cas9. Scientific Reports, 2016, 6: 30714CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Wang H H, Isaacs F J, Carr P A, Sun Z Z, Xu G, Forest C R, Church G M. Programming cells by multiplex genome engineering and accelerated evolution. Nature, 2009, 460(7257): 894–898CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Pál C, Papp B, Pósfai G. The dawn of evolutionary genome engineering. Nature Reviews. Genetics, 2014, 15(7): 504–512CrossRefPubMedGoogle Scholar
  49. 49.
    Yokobayashi Y, Weiss R, Arnold F H. Directed evolution of a genetic circuit. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(26): 16587–16591CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Mosberg J A, LajoieM J, Church G M. Lambda red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. Genetics, 2010, 186(3): 791–799CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lajoie MJ, Gregg C J, Mosberg J A, Washington G C, Church G M. Manipulating replisome dynamics to enhance lambda red-mediated multiplex genome engineering. Nucleic Acids Research, 2012, 40(22): e170CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Isaacs F J, Carr P A, Wang H H, Lajoie M J, Sterling B, Kraal L, Tolonen A C, Gianoulis T A, Goodman D B, Reppas N B, et al. Precise manipulation of chromosomes in vivo enables genome-wide Codon replacement. Science, 2011, 333(6040): 348–353CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Lajoie MJ, Rovner A J, Goodman D B, Aerni H R, Haimovich A D, Kuznetsov G, Mercer J A, Wang H H, Carr P A, Mosberg J A, et al. Genomically recoded organisms expand biological functions. Science, 2013, 342(6156): 357–360CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Farzadfard F, Lu T K. Genomically encoded analog memory with precise in vivo DNA writing in living cell populations. Science, 2014, 346(6211): 1256272CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Perli S D, Cui C H, Lu T K. Continuous genetic recording with selftargeting CRISPR-Cas in human cells. Science, 2016, 353(6304): aag0511Google Scholar
  56. 56.
    Barrick J E, Yu D S, Yoon S H, Jeong H, Oh T K, Schneider D, Lenski R E, Kim J F. Genome evolution and adaptation in a longterm experiment with Escherichia coli. Nature, 2009, 461(7268): 1243–1247CrossRefPubMedGoogle Scholar
  57. 57.
    Cooper V S, Schneider D, Blot M, Lenski R E. Mechanisms causing rapid and parallel losses of ribose catabolism in evolving populations of Escherichia coli B. Journal of Bacteriology, 2001, 183(9): 2834–2841CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Elena S F, Lenski R E. Evolution experiments with microorganisms: The dynamics and genetic bases of adaptation. Nature Reviews. Genetics, 2003, 4(6): 457–469CrossRefPubMedGoogle Scholar
  59. 59.
    Kolisnychenko V, Plunkett G, Herring C D, Feher T, Posfai J, Blattner F R, Posfai G. Engineering a reduced Escherichia coli genome. Genome Research, 2002, 12(4): 640–647CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Pósfai G, Plunkett G, Fehér T, Frisch D, Keil G M, Umenhoffer K, Kolisnychenko V, Stahl B, Sharma S S. Arruda M de, et al. Emergent properties of reduced-genome Escherichia coli. Science, 2006, 312(5776): 1044–1046PubMedGoogle Scholar
  61. 61.
    Csörgő B, Nyerges Á, Pósfai G, Fehér T. System-level genome editing in microbes. Current Opinion in Microbiology, 2016, 33: 113–122CrossRefPubMedGoogle Scholar
  62. 62.
    St-Pierre F, Cui L, Priest D G, Endy D, Dodd I B, Shearwin K E. One-step cloning and chromosomal integration of DNA. ACS Synthetic Biology, 2013, 2(9): 537–541CrossRefPubMedGoogle Scholar
  63. 63.
    Santos C N S, Regitsky D D, Yoshikuni Y. Implementation of stable and complex biological systems through recombinase-assisted genome engineering. Nature Communications, 2013, 4: 2503CrossRefPubMedGoogle Scholar
  64. 64.
    Santos C N S, Yoshikuni Y. Engineering complex biological systems in bacteria through recombinase-assisted genome engineering. Nature Protocols, 2014, 9(6): 1320–1336CrossRefPubMedGoogle Scholar
  65. 65.
    Enyeart P J, Chirieleison S M, Dao M N, Perutka J, Quandt E M, Yao J, Whitt J T, Keatinge-Clay A T, Lambowitz A M, Ellington A D. Generalized bacterial genome editing using mobile group II introns and Cre-lox. Molecular Systems Biology, 2013, 9(1): 685CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Krishnakumar R, Grose C, Haft D H, Zaveri J, Alperovich N, Gibson D G, Merryman C, Glass J I. Simultaneous non-contiguous deletions using large synthetic DNA and site-specific recombinases. Nucleic Acids Research, 2014, 42(14): e111CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Dymond J S, Richardson S M, Coombes C E, Babatz T, Muller H, Annaluru N, Blake W J, Schwerzmann J W, Dai J, Lindstrom D L, et al. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature, 2011, 477(7365): 471–476CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Karpinski J, Hauber I, Chemnitz J, Schäfer C, Paszkowski-Rogacz M, Chakraborty D, Beschorner N, Hofmann-Sieber H, Lange U C, Grundhoff A, et al. Directed evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificity. Nature Biotechnology, 2016, 34(4): 401–409CrossRefPubMedGoogle Scholar
  69. 69.
    Gibson D G, Young L, Chuang R Y, Venter J C, Hutchison C A, Smith H O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 2009, 6(5): 343–345CrossRefPubMedGoogle Scholar
  70. 70.
    Lartigue C, Glass J I, Alperovich N, Pieper R, Parmar P P, Hutchison C A, Smith H O, Venter J C. Genome transplantation in bacteria: Changing one species to another. Science, 2007, 317(5838): 632–638CrossRefPubMedGoogle Scholar
  71. 71.
    Lartigue C, Vashee S, Algire M A, Chuang R Y, Benders G A, Ma L, Noskov V N, Denisova E A, Gibson D G, Assad-Garcia N, et al. Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science, 2009, 325(5948): 1693–1696CrossRefPubMedGoogle Scholar
  72. 72.
    Karas B J, Jablanovic J, Irvine E, Sun L, Ma L, Weyman P D, Gibson D G, Glass J I, Venter J C, Hutchison III C A, et al. Transferring whole genomes from bacteria to yeast spheroplasts using entire bacterial cells to reduce DNA shearing. Nature Protocols, 2014, 9(4): 743–750CrossRefPubMedGoogle Scholar
  73. 73.
    Gibson D G, Glass J I, Lartigue C, Noskov V N, Chuang R Y, Algire M A, Benders G A, Montague M G, Ma L, Moodie M M, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 2010, 329(5987): 52–56CrossRefPubMedGoogle Scholar
  74. 74.
    Kang H S, Charlop-Powers Z, Brady S F. Multiplexed CRISPR/ Cas9-and TAR-mediated promoter engineering of natural product biosynthetic gene clusters in yeast. ACS Synthetic Biology, 2016, 5(9): 1002–1010CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Temme K, Zhao D, Voigt C A. Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(18): 7085–7090CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Smanski M J, Bhatia S, Zhao D, Park Y, Woodruff L B A, Giannoukos G, Ciulla D, Busby M, Calderon J, Nicol R, et al. Functional optimization of gene clusters by combinatorial design and assembly. Nature Biotechnology, 2014, 32(12): 1241–1249CrossRefPubMedGoogle Scholar
  77. 77.
    Sander J D, Joung J K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 2014, 32(4): 347–355CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of Life SciencesArizona State UniversityTempeUSA
  2. 2.School of Biological and Health Systems EngineeringArizona State UniversityTempeUSA

Personalised recommendations