Skip to main content
Log in

Optimization and modeling of biohydrogen production by mixed bacterial cultures from raw cassava starch

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The production of bio-hydrogen from raw cassava starch via a mixed-culture dark fermentation process was investigated. The production yield of H2 was optimized by adjusting the substrate concentration and the microorganism mixture ratio. A maximum H2 yield of 1.72 mol H2/mol glucose was obtained with a cassava starch concentration of 10 g/L to give a 90% utilization rate. The kinetics of the substrate utilization and of the generation of both hydrogen and volatile fatty acids were also investigated. The substrate utilization follows pseudo first order reaction kinetics, whereas the production of both H2 and the VFAs correlate with the Gompertz equation. These results show that cassava is a good candidate for the production of biohydrogen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chemical Society Reviews, 2014, 43(15): 5234–5244

    Article  CAS  PubMed  Google Scholar 

  2. Jiang S P, Shen P K, Sun A X, Sun S, Qiao J. Preface to the special section on “International Conference on Electrochemical Energy Science and Technology (EEST2014), 31 October–4 November 2014, Shanghai, China”. International Journal of Hydrogen Energy, 2015, 40(41): 14271

    Article  CAS  Google Scholar 

  3. Chen C Y, Yang MH, Yeh K L, Chang J S. Biohydrogen production using sequential two-stage dark and photo fermentation processes. International Journal of Hydrogen Energy, 2008, 33(18): 4755–4762

    Article  CAS  Google Scholar 

  4. Gadhamshetty V, Sukumaran A, Nirmalakhandan N, Theinmyint M. Photofermentation of malate for biohydrogen production—a modeling approach. International Journal of Hydrogen Energy, 2008, 33(9): 2138–2146

    Article  CAS  Google Scholar 

  5. Lin C Y, Jo C H. Hydrogen production from sucrose using an anaerobic sequencing batch reactor process. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2003, 78(6): 678–684

    Article  CAS  Google Scholar 

  6. Sreethawong T, Chatsiriwatana S, Rangsunvigit P, Chavadej S. Hydrogen production from cassava wastewater using an anaerobic sequencing batch reactor: Effects of operational parameters, COD: N ratio, and organic acid composition. International Journal of Hydrogen Energy, 2010, 35(9): 4092–4102

    Article  CAS  Google Scholar 

  7. Wang S, Zhang T, Su H. Enhanced hydrogen production from corn starch wastewater as nitrogen source by mixed cultures. Renewable Energy, 2016, 96: 1135–1141

    Article  CAS  Google Scholar 

  8. Kapdan I K, Kargi F. Bio-hydrogen production from waste materials. Enzyme and Microbial Technology, 2006, 38(5): 569–582

    Article  CAS  Google Scholar 

  9. Manish S, Banerjee R. Comparison of biohydrogen production processes. International Journal of Hydrogen Energy, 2008, 33(1): 279–286

    Article  CAS  Google Scholar 

  10. Meherkotay S, Das D. Biohydrogen as a renewable energy resource—prospects and potentials. International Journal of Hydrogen Energy, 2008, 33(1): 258–263

    Article  CAS  Google Scholar 

  11. Angenent L T, Wrenn B A. Optimizing mixed-culture bioprocessing to convert wastes into bionergy. Bioenergy, 2008, 179–194

    Chapter  Google Scholar 

  12. Sydney E B, Larroche C, Novak A C, Nouaille R, Sarma S J, Brar S K, Letti L A J, Soccol V T, Soccol C R. Economic process to produce biohydrogen and volatile fatty acids by a mixed culture using vinasse from sugarcane ethanol industry as nutrient source. Bioresource Technology, 2014, 159(6): 380–386

    Article  CAS  PubMed  Google Scholar 

  13. Wei Z, Zhang Y, Du B, Dong W, Qin W, Zhao Y. Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria. Bioresource Technology, 2013, 142(8): 240–245

    PubMed  Google Scholar 

  14. Ghimire A, Sposito F, Frunzo L, Lens P N, Pirozzi F, Esposito G. Improved dark fermentative hydrogen yields from complex waste biomass using mixed anaerobic cultures. Proceedings of the Water Environment Federation, 2015, 2(2): 1

    Article  Google Scholar 

  15. Argun H, Kargi F. Bio-hydrogen production from ground wheat starch by continuous combined fermentation using annular-hybrid bioreactor. International Journal of Hydrogen Energy, 2010, 35(12): 6170–6178

    Article  CAS  Google Scholar 

  16. Bao M, Su H, Tan T. Biohydrogen production by dark fermentation of starch using mixed bacterial cultures of bacillus sp. and brevumdimonas sp. Energy & Fuels, 2012, 26(9): 5872–5878

    Article  CAS  Google Scholar 

  17. Hu B, Chen S. Pretreatment of methanogenic granules for immobilized hydrogen fermentation. International Journal of Hydrogen Energy, 2007, 32(15): 3266–3273

    Article  CAS  Google Scholar 

  18. Mu Y, Yu H Q, Wang G. Evaluation of three methods for enriching H2-producing cultures from anaerobic sludge. Enzyme and Microbial Technology, 2007, 40(4): 947–953

    Article  CAS  Google Scholar 

  19. Chaganti S R, Kim D H, Lalman J A, Shewa W A. Statistical optimization of factors affecting biohydrogen production from xylose fermentation using inhibited mixed anaerobic cultures. International Journal of Hydrogen Energy, 2012, 37(16): 11710–11718

    Article  CAS  Google Scholar 

  20. Masset J, Calusinska M, Hamilton C, Joris B, Wilmotte A, Thonart P. Fermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures of Clostridium spp. Biotechnology for Biofuels, 2012, 5(1): 1

    Article  CAS  Google Scholar 

  21. Chen W, Wu F, Zhang J. Potential production of non-food biofuels in China. Renewable Energy, 2016, 85: 939–944

    Article  CAS  Google Scholar 

  22. Baeyens J, Kang Q, Appels L, Dewil R, Lv Y, Tan T. Challenges and opportunities in improving the production of bio-ethanol. Progress in Energy and Combustion Science, 2015, 47: 60–88

    Article  Google Scholar 

  23. Luo X. Strategies for developing cassava industry in Guangxi. Zhongguo Nongxue Tongbao, 2004, 20(6): 376–379

    Google Scholar 

  24. Li Z, Huang Z, Yang Z, Chen D. The harmful factors and countermeasure influencing development of cassava fuel-alcohol industry. Renewable Energy Resources, 2008, 26(3): 106–110

    CAS  Google Scholar 

  25. Hu Z, Fang F, Ben D F, Pu G, Wang C. Net energy, CO2 emission, and life-cycle cost assessment of cassava-based ethanol as an alternative automotive fuel in (the) PRC. Applied Energy, 2004, 78(3): 247–256

    Article  CAS  Google Scholar 

  26. Hu Z, Tan P, Pu G. Multi-objective optimization of cassava-based fuel ethanol used as an alternative automotive fuel in Guangxi, China. Applied Energy, 2006, 83(8): 819–840

    Article  CAS  Google Scholar 

  27. Zhang T, Bao M D, Wang Y, Su H J, Tan T W. Genome sequence of Bacillus cereus strain A1, an efficient starch-utilizing producer of hydrogen. Genome Announcements, 2014, 2(3): e00494–e14

    PubMed  PubMed Central  Google Scholar 

  28. Zhang T, Bao M D, Wang Y, Su H J, Tan T W. Genome sequence of a promising hydrogen-producing facultative anaerobic bacterium, Brevundimonas naejangsanensis strain B1. Genome Announcements, 2014, 2(3): e00542–e14

    PubMed  PubMed Central  Google Scholar 

  29. Bao M D, Su H J, Tan T W. Dark fermentative bio-hydrogen production: Effects of substrate pre-treatment and addition of metal ions or l-cysteine. Fuel, 2013, 112: 38–44

    Article  CAS  Google Scholar 

  30. Wang J, Wan W. Factors influencing fermentative hydrogen production: A review. International Journal of Hydrogen Energy, 2009, 34(2): 799–811

    Article  CAS  Google Scholar 

  31. Ginkel S V, Sung S, Lay J J. Biohydrogen production as a function of pH and substrate concentration. Environmental Science & Technology, 2001, 35(24): 4726–4730

    Article  CAS  Google Scholar 

  32. de Amorim E L C, Sader L T, Silva E L. Effect of substrate concentration on dark fermentation hydrogen production using an anaerobic fluidized bed reactor. Applied Biochemistry and Biotechnology, 2012, 166(5): 1248–1263

    Article  CAS  PubMed  Google Scholar 

  33. Chen W M, Tseng Z J, Lee K S, Chang J S. Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. International Journal of Hydrogen Energy, 2005, 30(10): 1063–1070

    Article  CAS  Google Scholar 

  34. Ren N Q, Wang B Z, Ma F. A physiological ecology analysis of acidogenic fermentation of organic wastewater. China Biogas, 1995, 13(1): 1–6

    Google Scholar 

  35. Yokoi H, Tokushige T, Hirose J, Hayashi S, Takasaki Y H. H2production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes. Biotechnology Letters, 1998, 20(2): 143–147

    Article  CAS  Google Scholar 

  36. Vatsala T M, Raj S M, Manimaran A. A pilot-scale study of biohydrogen production from distillery effluent using defined bacterial co-culture. International Journal of Hydrogen Energy, 2008, 33(20): 5404–5415

    Article  CAS  Google Scholar 

  37. Argun H, Kargi F. Effects of sludge pre-treatment method on biohydrogen production by dark fermentation of waste ground wheat. International Journal of Hydrogen Energy, 2009, 34(20): 8543–8548

    Article  CAS  Google Scholar 

  38. Appels L, Baeyens J, Degrève J, Dewil R. Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 2008, 34(6): 755–781

    Article  CAS  Google Scholar 

  39. Hsiao C L, Chang J J, Wu J H, Chin W C, Wen F S, Huang C C, Chen C C, Lin C Y. Clostridium strain co-cultures for biohydrogen production enhancement from condensed molasses fermentation solubles. International Journal of Hydrogen Energy, 2009, 34(17): 7173–7181

    Article  CAS  Google Scholar 

  40. Lee K S, Hsu Y F, Lo Y C, Lin P J, Lin C Y, Chang J S. Exploring optimal environmental factors for fermentative hydrogen production from starch using mixed anaerobic microflora. International Journal of Hydrogen Energy, 2008, 33(5): 1565–1572

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their thanks for the support from the National Natural Science Foundation of China (Grant No. 21525625), the National Basic Research Program of China (973 Program, Grant No. 2014CB745100), the National High Technology Research and Development Program of China (863 Program, Grant No. 2013AA020302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijia Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Ma, Z., Zhang, T. et al. Optimization and modeling of biohydrogen production by mixed bacterial cultures from raw cassava starch. Front. Chem. Sci. Eng. 11, 100–106 (2017). https://doi.org/10.1007/s11705-017-1617-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-017-1617-3

Keywords

Navigation