Frontiers of Chemical Science and Engineering

, Volume 11, Issue 1, pp 100–106

Optimization and modeling of biohydrogen production by mixed bacterial cultures from raw cassava starch

  • Shaojie Wang
  • Zhihong Ma
  • Ting Zhang
  • Meidan Bao
  • Haijia Su
Research Article
  • 66 Downloads

Abstract

The production of bio-hydrogen from raw cassava starch via a mixed-culture dark fermentation process was investigated. The production yield of H2 was optimized by adjusting the substrate concentration and the microorganism mixture ratio. A maximum H2 yield of 1.72 mol H2/mol glucose was obtained with a cassava starch concentration of 10 g/L to give a 90% utilization rate. The kinetics of the substrate utilization and of the generation of both hydrogen and volatile fatty acids were also investigated. The substrate utilization follows pseudo first order reaction kinetics, whereas the production of both H2 and the VFAs correlate with the Gompertz equation. These results show that cassava is a good candidate for the production of biohydrogen.

Keywords

cassava biohydrogen mixed cultures kinetics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chemical Society Reviews, 2014, 43(15): 5234–5244CrossRefGoogle Scholar
  2. 2.
    Jiang S P, Shen P K, Sun A X, Sun S, Qiao J. Preface to the special section on “International Conference on Electrochemical Energy Science and Technology (EEST2014), 31 October–4 November 2014, Shanghai, China”. International Journal of Hydrogen Energy, 2015, 40(41): 14271CrossRefGoogle Scholar
  3. 3.
    Chen C Y, Yang MH, Yeh K L, Chang J S. Biohydrogen production using sequential two-stage dark and photo fermentation processes. International Journal of Hydrogen Energy, 2008, 33(18): 4755–4762CrossRefGoogle Scholar
  4. 4.
    Gadhamshetty V, Sukumaran A, Nirmalakhandan N, Theinmyint M. Photofermentation of malate for biohydrogen production—a modeling approach. International Journal of Hydrogen Energy, 2008, 33(9): 2138–2146CrossRefGoogle Scholar
  5. 5.
    Lin C Y, Jo C H. Hydrogen production from sucrose using an anaerobic sequencing batch reactor process. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2003, 78(6): 678–684CrossRefGoogle Scholar
  6. 6.
    Sreethawong T, Chatsiriwatana S, Rangsunvigit P, Chavadej S. Hydrogen production from cassava wastewater using an anaerobic sequencing batch reactor: Effects of operational parameters, COD: N ratio, and organic acid composition. International Journal of Hydrogen Energy, 2010, 35(9): 4092–4102CrossRefGoogle Scholar
  7. 7.
    Wang S, Zhang T, Su H. Enhanced hydrogen production from corn starch wastewater as nitrogen source by mixed cultures. Renewable Energy, 2016, 96: 1135–1141CrossRefGoogle Scholar
  8. 8.
    Kapdan I K, Kargi F. Bio-hydrogen production from waste materials. Enzyme and Microbial Technology, 2006, 38(5): 569–582CrossRefGoogle Scholar
  9. 9.
    Manish S, Banerjee R. Comparison of biohydrogen production processes. International Journal of Hydrogen Energy, 2008, 33(1): 279–286CrossRefGoogle Scholar
  10. 10.
    Meherkotay S, Das D. Biohydrogen as a renewable energy resource—prospects and potentials. International Journal of Hydrogen Energy, 2008, 33(1): 258–263CrossRefGoogle Scholar
  11. 11.
    Angenent L T, Wrenn B A. Optimizing mixed-culture bioprocessing to convert wastes into bionergy. Bioenergy, 2008, 179–194CrossRefGoogle Scholar
  12. 12.
    Sydney E B, Larroche C, Novak A C, Nouaille R, Sarma S J, Brar S K, Letti L A J, Soccol V T, Soccol C R. Economic process to produce biohydrogen and volatile fatty acids by a mixed culture using vinasse from sugarcane ethanol industry as nutrient source. Bioresource Technology, 2014, 159(6): 380–386CrossRefGoogle Scholar
  13. 13.
    Wei Z, Zhang Y, Du B, Dong W, Qin W, Zhao Y. Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria. Bioresource Technology, 2013, 142(8): 240–245Google Scholar
  14. 14.
    Ghimire A, Sposito F, Frunzo L, Lens P N, Pirozzi F, Esposito G. Improved dark fermentative hydrogen yields from complex waste biomass using mixed anaerobic cultures. Proceedings of the Water Environment Federation, 2015, 2(2): 1CrossRefGoogle Scholar
  15. 15.
    Argun H, Kargi F. Bio-hydrogen production from ground wheat starch by continuous combined fermentation using annular-hybrid bioreactor. International Journal of Hydrogen Energy, 2010, 35(12): 6170–6178CrossRefGoogle Scholar
  16. 16.
    Bao M, Su H, Tan T. Biohydrogen production by dark fermentation of starch using mixed bacterial cultures of bacillus sp. and brevumdimonas sp. Energy & Fuels, 2012, 26(9): 5872–5878CrossRefGoogle Scholar
  17. 17.
    Hu B, Chen S. Pretreatment of methanogenic granules for immobilized hydrogen fermentation. International Journal of Hydrogen Energy, 2007, 32(15): 3266–3273CrossRefGoogle Scholar
  18. 18.
    Mu Y, Yu H Q, Wang G. Evaluation of three methods for enriching H2-producing cultures from anaerobic sludge. Enzyme and Microbial Technology, 2007, 40(4): 947–953CrossRefGoogle Scholar
  19. 19.
    Chaganti S R, Kim D H, Lalman J A, Shewa W A. Statistical optimization of factors affecting biohydrogen production from xylose fermentation using inhibited mixed anaerobic cultures. International Journal of Hydrogen Energy, 2012, 37(16): 11710–11718CrossRefGoogle Scholar
  20. 20.
    Masset J, Calusinska M, Hamilton C, Joris B, Wilmotte A, Thonart P. Fermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures of Clostridium spp. Biotechnology for Biofuels, 2012, 5(1): 1CrossRefGoogle Scholar
  21. 21.
    Chen W, Wu F, Zhang J. Potential production of non-food biofuels in China. Renewable Energy, 2016, 85: 939–944CrossRefGoogle Scholar
  22. 22.
    Baeyens J, Kang Q, Appels L, Dewil R, Lv Y, Tan T. Challenges and opportunities in improving the production of bio-ethanol. Progress in Energy and Combustion Science, 2015, 47: 60–88CrossRefGoogle Scholar
  23. 23.
    Luo X. Strategies for developing cassava industry in Guangxi. Zhongguo Nongxue Tongbao, 2004, 20(6): 376–379Google Scholar
  24. 24.
    Li Z, Huang Z, Yang Z, Chen D. The harmful factors and countermeasure influencing development of cassava fuel-alcohol industry. Renewable Energy Resources, 2008, 26(3): 106–110Google Scholar
  25. 25.
    Hu Z, Fang F, Ben D F, Pu G, Wang C. Net energy, CO2 emission, and life-cycle cost assessment of cassava-based ethanol as an alternative automotive fuel in (the) PRC. Applied Energy, 2004, 78(3): 247–256CrossRefGoogle Scholar
  26. 26.
    Hu Z, Tan P, Pu G. Multi-objective optimization of cassava-based fuel ethanol used as an alternative automotive fuel in Guangxi, China. Applied Energy, 2006, 83(8): 819–840CrossRefGoogle Scholar
  27. 27.
    Zhang T, Bao M D, Wang Y, Su H J, Tan T W. Genome sequence of Bacillus cereus strain A1, an efficient starch-utilizing producer of hydrogen. Genome Announcements, 2014, 2(3): e00494–e14Google Scholar
  28. 28.
    Zhang T, Bao M D, Wang Y, Su H J, Tan T W. Genome sequence of a promising hydrogen-producing facultative anaerobic bacterium, Brevundimonas naejangsanensis strain B1. Genome Announcements, 2014, 2(3): e00542–e14Google Scholar
  29. 29.
    Bao M D, Su H J, Tan T W. Dark fermentative bio-hydrogen production: Effects of substrate pre-treatment and addition of metal ions or l-cysteine. Fuel, 2013, 112: 38–44CrossRefGoogle Scholar
  30. 30.
    Wang J, Wan W. Factors influencing fermentative hydrogen production: A review. International Journal of Hydrogen Energy, 2009, 34(2): 799–811CrossRefGoogle Scholar
  31. 31.
    Ginkel S V, Sung S, Lay J J. Biohydrogen production as a function of pH and substrate concentration. Environmental Science & Technology, 2001, 35(24): 4726–4730CrossRefGoogle Scholar
  32. 32.
    de Amorim E L C, Sader L T, Silva E L. Effect of substrate concentration on dark fermentation hydrogen production using an anaerobic fluidized bed reactor. Applied Biochemistry and Biotechnology, 2012, 166(5): 1248–1263CrossRefGoogle Scholar
  33. 33.
    Chen W M, Tseng Z J, Lee K S, Chang J S. Fermentative hydrogen production with Clostridium butyricum CGS5 isolated from anaerobic sewage sludge. International Journal of Hydrogen Energy, 2005, 30(10): 1063–1070CrossRefGoogle Scholar
  34. 34.
    Ren N Q, Wang B Z, Ma F. A physiological ecology analysis of acidogenic fermentation of organic wastewater. China Biogas, 1995, 13(1): 1–6Google Scholar
  35. 35.
    Yokoi H, Tokushige T, Hirose J, Hayashi S, Takasaki Y H. H2production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes. Biotechnology Letters, 1998, 20(2): 143–147CrossRefGoogle Scholar
  36. 36.
    Vatsala T M, Raj S M, Manimaran A. A pilot-scale study of biohydrogen production from distillery effluent using defined bacterial co-culture. International Journal of Hydrogen Energy, 2008, 33(20): 5404–5415CrossRefGoogle Scholar
  37. 37.
    Argun H, Kargi F. Effects of sludge pre-treatment method on biohydrogen production by dark fermentation of waste ground wheat. International Journal of Hydrogen Energy, 2009, 34(20): 8543–8548CrossRefGoogle Scholar
  38. 38.
    Appels L, Baeyens J, Degrève J, Dewil R. Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 2008, 34(6): 755–781CrossRefGoogle Scholar
  39. 39.
    Hsiao C L, Chang J J, Wu J H, Chin W C, Wen F S, Huang C C, Chen C C, Lin C Y. Clostridium strain co-cultures for biohydrogen production enhancement from condensed molasses fermentation solubles. International Journal of Hydrogen Energy, 2009, 34(17): 7173–7181CrossRefGoogle Scholar
  40. 40.
    Lee K S, Hsu Y F, Lo Y C, Lin P J, Lin C Y, Chang J S. Exploring optimal environmental factors for fermentative hydrogen production from starch using mixed anaerobic microflora. International Journal of Hydrogen Energy, 2008, 33(5): 1565–1572CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Shaojie Wang
    • 1
  • Zhihong Ma
    • 1
  • Ting Zhang
    • 1
  • Meidan Bao
    • 1
  • Haijia Su
    • 1
  1. 1.Beijing Key Laboratory of BioprocessBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations