Frontiers of Chemical Science and Engineering

, Volume 11, Issue 4, pp 509–515 | Cite as

Enzyme-instructed self-assembly of peptides containing phosphoserine to form supramolecular hydrogels as potential soft biomaterials

  • Jie Zhou
  • Xuewen Du
  • Jiaqing Wang
  • Natsuko Yamagata
  • Bing XuEmail author


Enzyme-instructed self-assembly (EISA) offers a facile approach to explore the supramolecular assemblies of small molecules in cellular milieu for a variety of biomedical applications. One of the commonly used enzymes is phosphatase, but the study of the substrates of phosphatases mainly focuses on the phosphotyrosine containing peptides. In this work, we examine the EISA of phosphoserine containing small peptides for the first time by designing and synthesizing a series of precursors containing only phosphoserine or both phosphoserine and phosphotyrosine. Conjugating a phosphoserine to the C-terminal of a well-established selfassembling peptide backbone, (naphthalene-2-ly)-acetyldiphenylalanine (NapFF), affords a novel hydrogelation precursor for EISA. The incorporation of phosphotyrosine, another substrate of phosphatase, into the resulting precursor, provides one more enzymatic trigger on a single molecule, and meanwhile increases the precursors’ propensity to aggregate after being fully dephosphorylated. Exchanging the positions of phosphorylated serine and tyrosine in the peptide backbone provides insights on how the specific molecular structures influence self-assembling behaviors of small peptides and the subsequent cellular responses. Moreover, the utilization of D-amino acids largely enhances the biostability of the peptides, thus providing a unique soft material for potential biomedical applications.


enzyme-instructed self-assembly phosphoserine phosphatase supramolecular hydrogel 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was partially supported by NIH (CA142746), NSF (MRSEC-1420382) and the W. M. Keck Foundation. We thank Brandeis EM and Optical Imaging facilities for TEM. JZ is an HHMI student fellow.


  1. 1.
    Strobel S A, Cochrane J C. Rna catalysis: Ribozymes, ribosomes, and riboswitches. Current Opinion in Chemical Biology, 2007, 11 (6): 636–643CrossRefGoogle Scholar
  2. 2.
    Green D R, Reed J C. Mitochondria and apoptosis. Science, 1998, 281(5381): 1309–1312CrossRefGoogle Scholar
  3. 3.
    Hershko A, Ciechanover A. The ubiquitin system. Annual Review of Biochemistry, 1998, 67(1): 425–479CrossRefGoogle Scholar
  4. 4.
    Mitchison T, Kirschner M. Dynamic instability of microtubule growth. Nature, 1984, 312(5991): 237–242CrossRefGoogle Scholar
  5. 5.
    Schiff P B, Fant J, Horwitz S B. Promotion of microtubule assembly in vitro by taxol. Nature, 1979, 277(5698): 665–667CrossRefGoogle Scholar
  6. 6.
    Meyers M A, Chen P Y, Lin A Y M, Seki Y. Biological materials: Structure and mechanical properties. Progress in Materials Science, 2008, 53(1): 1–206CrossRefGoogle Scholar
  7. 7.
    Kirschner M, Mitchison T. Beyond self-assembly—from microtubules to morphogenesis. Cell, 1986, 45(3): 329–342CrossRefGoogle Scholar
  8. 8.
    Korn E D, Carlier M F, Pantaloni D. Actin polymerization and Atp hydrolysis. Science, 1987, 238(4827): 638–644CrossRefGoogle Scholar
  9. 9.
    Whitesides G M. Bioinspiration: Something for everyone. Interface Focus, 2015, 5(4): 20150031CrossRefGoogle Scholar
  10. 10.
    Gao Y, Shi J, Yuan D, Xu B. Imaging enzyme-triggered selfassembly of small molecules inside live cells. Nature Communications, 2012, 3: 1033CrossRefGoogle Scholar
  11. 11.
    Li J, Kuang Y, Shi J, Gao Y, Zhou J, Xu B. The conjugation of nonsteroidal anti-inflammatory drugs (Nsaid) to small peptides for generating multifunctional supramolecular nanofibers/hydrogels. Beilstein Journal of Organic Chemistry, 2013, 9: 908–917CrossRefGoogle Scholar
  12. 12.
    Thornton K, Smith A M, Merry C L R, Ulijn R V. Controlling stiffness in nanostructured hydrogels produced by enzymatic dephosphorylation. Biochemical Society Transactions, 2009, 37 (4): 660–664CrossRefGoogle Scholar
  13. 13.
    Wang W, Qian J, Tang A, An L, Zhong K, Liang G. Using magnetic resonance imaging to study enzymatic hydrogelation. Analytical Chemistry, 2014, 86(12): 5955–5961CrossRefGoogle Scholar
  14. 14.
    Yang Z, Ho P L, Liang G, Chow K H, Wang Q, Cao Y, Guo Z, Xu B. Using beta-L-actamase to trigger supramolecular hydrogelation. Journal of the American Chemical Society, 2007, 129(2): 266–267CrossRefGoogle Scholar
  15. 15.
    Guilbaud J B, Vey E, Boothroyd S, Smith AM, Ulijn R V, Saiani A, Miller A F. Enzymatic catalyzed synthesis and triggered gelation of ionic peptides. Langmuir, 2010, 26(13): 11297–11303CrossRefGoogle Scholar
  16. 16.
    Das A K, Collins R, Ulijn R V. Exploiting enzymatic (reversed) hydrolysis in directed self-assembly of peptide nanostructures. Small, 2008, 4(2): 279–287CrossRefGoogle Scholar
  17. 17.
    Williams R J, Gardiner J, Sorensen A B, Marchesan S, Mulder R J, Mc Lean KM, Hartley P G. Monitoring the early stage self-assembly of enzyme-assisted peptide hydrogels. Australian Journal of Chemistry, 2013, 66(5): 572–578Google Scholar
  18. 18.
    Toledano S, Williams R J, Jayawarna V, Ulijn R V. Enzymetriggered self-assembly of peptide hydrogels via reversed hydrolysis. Journal of the American Chemical Society, 2006, 128(4): 1070–1071CrossRefGoogle Scholar
  19. 19.
    Yang Z, Ma M, Xu B. Using matrix metalloprotease-9 (Mmp-9) to trigger supramolecular hydrogelation. Soft Matter, 2009, 5(13): 2546–2548Google Scholar
  20. 20.
    Bremmer S C, Mc Neil A J, Soellner M B. Enzyme-triggered gelation: Targeting proteases with internal cleavage sites. Chemical Communications, 2014, 50(14): 1691–1693CrossRefGoogle Scholar
  21. 21.
    Kalafatovic D, Nobis M, Son J, Anderson K I, Ulijn R V. Mmp-9 triggered self-assembly of doxorubicin nanofiber depots halts tumor growth. Biomaterials, 2016, 98: 192–202CrossRefGoogle Scholar
  22. 22.
    Qin X, Xie W, Tian S, Cai J, Yuan H, Yu Z, Butterfoss G L, Khuong A C, Gross R A. Enzyme-triggered hydrogelation via self-assembly of alternating peptides. Chemical Communications, 2013, 49(42): 4839–4841CrossRefGoogle Scholar
  23. 23.
    Bremmer S C, Chen J, McNeil A J, Soellner MB. A General method for detecting protease activity via gelation and its application to artificial clotting. Chemical Communications, 2012, 48(44): 5482–5484CrossRefGoogle Scholar
  24. 24.
    Song F, Zhang L M. Enzyme-catalyzed formation and structure characteristics of a protein-based hydrogel. Journal of Physical Chemistry B, 2008, 112(44): 13749–13755CrossRefGoogle Scholar
  25. 25.
    Choi Y C, Choi J S, Jung Y J, Cho Y W. Human gelatin tissueadhesive hydrogels prepared by enzyme-mediated biosynthesis of dopa and Fe3+ ion crosslinking. Journal of Materials Chemistry. B, Materials for Biology and Medicine, 2014, 2(2): 201–209CrossRefGoogle Scholar
  26. 26.
    Zhou R, Kuang Y, Zhou J, Du XW, Li J, Shi J F, Haburcak R, Xu B. Nanonets collect cancer secretome from pericellular space. PLoS One, 2016, 11(4): e0154126CrossRefGoogle Scholar
  27. 27.
    Zhou J, Xu B. Enzyme-instructed self-assembly: A multistep process for potential cancer therapy. Bioconjugate Chemistry, 2015, 26(6): 987–999CrossRefGoogle Scholar
  28. 28.
    Zhou J, Du X W, Yamagata N, Xu B. Enzyme-instructed selfassembly of small D-peptides as a multiple-step process for selectively killing cancer cells. Journal of the American Chemical Society, 2016, 138(11): 3813–3823CrossRefGoogle Scholar
  29. 29.
    Zhou J, Du X W, Xu B. Regulating the rate of molecular selfassembly for targeting cancer cells. Angewandte Chemie International Edition, 2016, 55(19): 5770–5775CrossRefGoogle Scholar
  30. 30.
    Shi J F, Du X W, Yuan D, Zhou J, Zhou N, Huang Y B, Xu B. D-Amino acids modulate the cellular response of enzymaticinstructed supramolecular nanofibers of small peptides. Biomacromolecules, 2014, 15(10): 3559–3568CrossRefGoogle Scholar
  31. 31.
    Wang H, Feng Z, Wu D, Fritzsching K J, Rigney M, Zhou J, Jiang Y, Schmidt-Rohr K, Xu B. Enzyme-regulated supramolecular assemblies of cholesterol conjugates against drug-resistant ovarian cancer cells. Journal of the American Chemical Society, 2016, 138 (34): 10758–10761CrossRefGoogle Scholar
  32. 32.
    Du X W, Zhou J, Xu B. Ectoenzyme switches the surface of magnetic nanoparticles for selective binding of cancer cells. Journal of Colloid and Interface Science, 2015, 447: 273–277CrossRefGoogle Scholar
  33. 33.
    Pires R A, Abul-Haija Y M, Costa D S, Novoa-Carballal R, Reis R L, Ulijn R V, Pashkuleva I. Controlling cancer cell fate using localized biocatalytic self-assembly of an aromatic carbohydrate amphiphile. Journal of the American Chemical Society, 2015, 137 (2): 576–579CrossRefGoogle Scholar
  34. 34.
    Lv L, Liu H, Chen X, Yang Z. Glutathione-triggered formation of molecular hydrogels for 3D cell culture. Colloids and Surfaces. B, Biointerfaces, 2013, 108: 352–357CrossRefGoogle Scholar
  35. 35.
    Wang H M, Yang Z M. Short-peptide-based molecular hydrogels: Novel gelation strategies and applications for tissue engineering and drug delivery. Nanoscale, 2012, 4(17): 5259–5267CrossRefGoogle Scholar
  36. 36.
    Cai Y, Shi Y, Wang H, Wang J, Ding D, Wang L, Yang Z. Environment-sensitive fluorescent supramolecular nanofibers for imaging applications. Analytical Chemistry, 2014, 86(4): 2193–2199CrossRefGoogle Scholar
  37. 37.
    Wang H, Luo Z, Wang Y, He T, Yang C, Ren C, Ma L, Gong C, Li X, Yang Z. Enzyme-catalyzed formation of supramolecular hydrogels as promising vaccine adjuvants. Advanced Functional Materials, 2016, 26(11): 1822–1829CrossRefGoogle Scholar
  38. 38.
    Tian Y, Wang H, Liu Y, Mao L, Chen W, Zhu Z, Liu W, Zheng W, Zhao Y, Kong D, Yang Z, Zhang W, Shao Y, Jiang X. A peptidebased nanofibrous hydrogel as a promising DNA nanovector for optimizing the efficacy of Hiv vaccine. Nano Letters, 2014, 14(3): 1439–1445CrossRefGoogle Scholar
  39. 39.
    Sargeant T D, Aparicio C, Goldberger J E, Cui H G, Stupp S I. Mineralization of peptide amphiphile nanofibers and its effect on the differentiation of human mesenchymal stem cells. Acta Biomaterialia, 2012, 8(7): 2456–2465CrossRefGoogle Scholar
  40. 40.
    Zhang Y, Kuang Y, Gao Y A, Xu B. Versatile small-molecule motifs for self-assembly in water and the formation of biofunctional supramolecular hydrogels. Langmuir, 2011, 27(2): 529–537CrossRefGoogle Scholar
  41. 41.
    Yang Z, Liang G, Xu B. Enzymatic hydrogelation of small molecules. Accounts of Chemical Research, 2008, 41(2): 315–326CrossRefGoogle Scholar
  42. 42.
    Cui H, Cheetham A G, Pashuck E T, Stupp S I. Amino acid sequence in constitutionally isomeric tetrapeptide amphiphiles dictates architecture of one-dimensional nanostructures. Journal of the American Chemical Society, 2014, 136(35): 12461–12468CrossRefGoogle Scholar
  43. 43.
    Cui H, Muraoka T, Cheetham A G, Stupp S I. Self-assembly of giant peptide nanobelts. Nano Letters, 2009, 9(3): 945–951CrossRefGoogle Scholar
  44. 44.
    Zhou J, Du X, Berciu C, He H, Shi J, Nicastro D, Xu B. Enzymeinstructed self-assembly for spatiotemporal profiling of the activities of alkaline phosphatases on live cells. Chem, 2016, 1(2): 246–263CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Jie Zhou
    • 1
  • Xuewen Du
    • 1
  • Jiaqing Wang
    • 1
  • Natsuko Yamagata
    • 1
  • Bing Xu
    • 1
    Email author
  1. 1.Department of ChemistryBrandeis UniversityWalthamUSA

Personalised recommendations