Cell-free systems in the new age of synthetic biology

  • Fernando Villarreal
  • Cheemeng Tan
Review Article


The advent of synthetic biology has ushered in new applications of cell-free transcription-translation systems. These cell-free systems are reconstituted using cellular proteins, and are amenable to modular control of their composition. Here, we discuss the historical advancement of cell-free systems, as well as their new applications in the rapid design of synthetic genetic circuits and components, directed evolution of biomolecules, diagnosis of infectious diseases, and synthesis of vaccines. Finally, we present our vision on the future direction of cell-free synthetic biology.


cell-free system application 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work is supported by the Branco-Weiss Fellowship (CT) and the Human Frontier Science Program (CT).


  1. 1.
    Lederman M, Zubay G. DNA-directed peptide synthesis I. A comparison of T2 and Escherichia coli DNA-directed peptide synthesis in two cell-free systems. Biochimica et Biophysica Acta, 1967, 149(1): 253–258PubMedGoogle Scholar
  2. 2.
    DeVries J K, Zubay G. DNA-directed peptide synthesis. II. The synthesis of the alpha-fragment of the enzyme beta-galactosidase. Proceedings of the National Academy of Sciences of the United States of America, 1967, 57(4): 1010–1012PubMedGoogle Scholar
  3. 3.
    Zubay G, Lederman M, DeVries J K. DNA-directed peptide synthesis. 3. Repression of beta-galactosidase synthesis and inhibition of repressor by inducer in a cell-free system. Proceedings of the National Academy of Sciences of the United States of America, 1967, 58(4): 1669–1675CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Reichman M, Penman S. Stimulation of polypeptide initiation in vitro after protein synthesis inhibition in vivo in HeLa cells. Proceedings of the National Academy of Sciences of the United States of America, 1973, 70(9): 2678–2682CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Roberts B E, Gorecki M, Mulligan R C, Danna K J, Rozenblatt S, Rich A. Simian virus 40 DNA directs synthesis of authentic viral polypeptides in a linked transcription-translation cell-free system. Proceedings of the National Academy of Sciences of the United States of America, 1975, 72(5): 1922–1926CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Pelham H R. Use of coupled transcription and translation to study mRNA production by vaccinia cores. Nature, 1977, 269(5628): 532–534CrossRefPubMedGoogle Scholar
  7. 7.
    Bottomley W, Whitfeld P R. Cell-free transcription and translation of total spinach chloroplast DNA. European Journal of Biochemistry, 1979, 93(1): 31–39CrossRefPubMedGoogle Scholar
  8. 8.
    Steggles A W, Wilson G N, Kantor J A, Picciano D J, Falvey A K, Anderson W F. Cell-free transcription of mammalian chromatin: transcription of globin messenger RNA sequences from bonemarrow chromatin with mammalian RNA polymerase. Proceedings of the National Academy of Sciences of the United States of America, 1974, 71(4): 1219–1223CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Yang H L, Ivashkiv L, Chen H Z, Zubay G, Cashel M. Cell-free coupled transcription-translation system for investigation of linear DNA segments. Proceedings of the National Academy of Sciences of the United States of America, 1980, 77(12): 7029–7033CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Kozak M. Context effects and inefficient initiation at non-AUG codons in eucaryotic cell-free translation systems. Molecular and Cellular Biology, 1989, 9(11): 5073–5080CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Gallie D R, Sleat D E, Watts J W, Turner P C, Wilson T M. The 5′-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucleic Acids Research, 1987, 15(8): 3257–3273CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Jang S K, Krausslich H G, Nicklin M J, Duke G M, Palmenberg A C, Wimmer E. A segment of the 5′ nontranslated region of encephalomyocarditis virus RNA directs internal entry of ribosomes during in vitro translation. Journal of Virology, 1988, 62(8): 2636–2643PubMedPubMedCentralGoogle Scholar
  13. 13.
    Yost C S, Hedgpeth J, Lingappa V R. A stop transfer sequence confers predictable transmembrane orientation to a previously secreted protein in cell-free systems. Cell, 1983, 34(3): 759–766CrossRefPubMedGoogle Scholar
  14. 14.
    Rothblatt J A, Meyer D I. Secretion in yeast: Reconstitution of the translocation and glycosylation of alpha-factor and invertase in a homologous cell-free system. Cell, 1986, 44(4): 619–628CrossRefPubMedGoogle Scholar
  15. 15.
    Kwon Y C, Jewett M C. High-throughput preparation methods of crude extract for robust cell-free protein synthesis. Scientific Reports, 2015, 5: 8663CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fujiwara K, Doi N. Biochemical preparation of cell extract for cellfree protein synthesis without physical disruption. PLoS One, 2016, 11(4): e0154614CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Wang X, Liu J, Zheng Y, Li J, Wang H, Zhou Y, Qi M, Yu H, Tang W, Zhao W M. An optimized yeast cell-free system: sufficient for translation of human papillomavirus 58 L1 mRNA and assembly of virus-like particles. Journal of Bioscience and Bioengineering, 2008, 106(1): 8–15CrossRefPubMedGoogle Scholar
  18. 18.
    Niimi T. Leishmania tarentolae for the production of multi-subunit complexes. Advances in Experimental Medicine and Biology, 2016, 896: 155–165CrossRefPubMedGoogle Scholar
  19. 19.
    Guild K, Zhang Y, Stacy R, Mundt E, Benbow S, Green A, Myler P J. Wheat germ cell-free expression system as a pathway to improve protein yield and solubility for the SSGCID pipeline. Acta Crystallographica. Section F, Structural Biology and Crystallization Communications, 2011, 67(9): 1027–1031CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Stech M, Quast R B, Sachse R, Schulze C, Wustenhagen D A, Kubick S. A continuous-exchange cell-free protein synthesis system based on extracts from cultured insect cells. PLoS One, 2014, 9(5): e96635CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Yadavalli R, Sam-Yellowe T. HeLa based cell free expression systems for expression of plasmodium rhoptry proteins. Journal of Visualized Experiments, 2015, 100: e52772Google Scholar
  22. 22.
    Gagoski D, Polinkovsky M E, Mureev S, Kunert A, Johnston W, Gambin Y, Alexandrov K. Performance benchmarking of four cellfree protein expression systems. Biotechnology and Bioengineering, 2016, 113(2): 292–300CrossRefPubMedGoogle Scholar
  23. 23.
    Kovtun O, Mureev S, Johnston W, Alexandrov K. Towards the construction of expressed proteomes using a Leishmania tarentolae based cell-free expression system. PLoS One, 2010, 5(12): e14388CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Matsuda T, Watanabe S, Kigawa T. Cell-free synthesis system suitable for disulfide-containing proteins. Biochemical and Biophysical Research Communications, 2013, 431(2): 296–301CrossRefPubMedGoogle Scholar
  25. 25.
    Chemla Y, Ozer E, Schlesinger O, Noireaux V, Alfonta L. Genetically expanded cell-free protein synthesis using endogenous pyrrolysyl orthogonal translation system. Biotechnology and Bioengineering, 2015, 112(8): 1663–1672CrossRefPubMedGoogle Scholar
  26. 26.
    Albayrak C, Swartz J R. Using E. coli-based cell-free protein synthesis to evaluate the kinetic performance of an orthogonal tRNA and aminoacyl-tRNA synthetase pair. Biochemical and Biophysical Research Communications, 2013, 431(2): 291–295CrossRefPubMedGoogle Scholar
  27. 27.
    Nevin D E, Pratt J M. A coupled in vitro transcription-translation system for the exclusive synthesis of polypeptides expressed from the T7 promoter. FEBS Letters, 1991, 291(2): 259–263CrossRefPubMedGoogle Scholar
  28. 28.
    Tabor S. Expression using the T7 RNA polymerase/promoter system. In: Current Protocols in Molecular Biology. New York: John Wiley & Sons, Inc, 2001Google Scholar
  29. 29.
    Shin J, Noireaux V. An E. coli cell-free expression toolbox: Application to synthetic gene circuits and artificial cells. ACS Synthetic Biology, 2012, 1(1): 29–41CrossRefPubMedGoogle Scholar
  30. 30.
    Garamella J, Marshall R, Rustad M, Noireaux V. The all E. coli TXTL toolbox 2.0: A platform for cell-free synthetic biology. ACS Synthetic Biology, 2016, 5(4): 344–355CrossRefPubMedGoogle Scholar
  31. 31.
    Chung B, Lee D Y. Computational codon optimization of synthetic gene for protein expression. BMC Systems Biology, 2012, 6(1): 134CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Noren C J, Anthony-Cahill S J, Griffith MC, Schultz P G. A general method for site-specific incorporation of unnatural amino acids into proteins. Science, 1989, 244(4901): 182–188CrossRefPubMedGoogle Scholar
  33. 33.
    Hong S H, Kwon Y C, Jewett M C. Non-standard amino acid incorporation into proteins using Escherichia coli cell-free protein synthesis. Frontiers in Chemistry, 2014, 2: 34CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Oza J P, Aerni H R, Pirman N L, Barber K W, ter Haar C M, Rogulina S, Amrofell M B, Isaacs F J, Rinehart J, Jewett M C. Robust production of recombinant phosphoproteins using cell-free protein synthesis. Nature Communications, 2015, 6: 8168CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Singh-Blom A, Hughes R A, Ellington A D. An amino acid depleted cell-free protein synthesis system for the incorporation of noncanonical amino acid analogs into proteins. Journal of Biotechnology, 2014, 178: 12–22CrossRefPubMedGoogle Scholar
  36. 36.
    Shimizu Y, Inoue A, Tomari Y, Suzuki T, Yokogawa T, Nishikawa K, Ueda T. Cell-free translation reconstituted with purified components. Nature Biotechnology, 2001, 19(8): 751–755CrossRefPubMedGoogle Scholar
  37. 37.
    Wang H H, Huang P Y, Xu G, Haas W, Marblestone A, Li J, Gygi S P, Forster A C, Jewett M C, Church G M. Multiplexed in vivo histagging of enzyme pathways for in vitro single-pot multienzyme catalysis. ACS Synthetic Biology, 2012, 1(2): 43–52CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hillebrecht J R, Chong S. A comparative study of protein synthesis in in vitro systems: From the prokaryotic reconstituted to the eukaryotic extract-based. BMC Biotechnology, 2008, 8(1): 1–9CrossRefGoogle Scholar
  39. 39.
    Kazuta Y, Matsuura T, Ichihashi N, Yomo T. Synthesis of milligram quantities of proteins using a reconstituted in vitro protein synthesis system. Journal of Bioscience and Bioengineering, 2014, 118(5): 554–557CrossRefPubMedGoogle Scholar
  40. 40.
    Li J, Gu L, Aach J, Church G M. Improved cell-free RNA and protein synthesis system. PLoS One, 2014, 9(9): e106232CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Niwa T, Kanamori T, Ueda T, Taguchi H. Global analysis of chaperone effects using a reconstituted cell-free translation system. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(23): 8937–8942CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Gibson D G, Young L, Chuang R Y, Venter J C, Hutchison C A, Smith H O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 2009, 6(5): 343–345CrossRefPubMedGoogle Scholar
  43. 43.
    Pachuk C J, Samuel M, Zurawski J A, Snyder L, Phillips P, Satishchandran C. Chain reaction cloning: A one-step method for directional ligation of multiple DNA fragments. Gene, 2000, 243(1-2): 19–25CrossRefPubMedGoogle Scholar
  44. 44.
    Chappell J, Jensen K, Freemont P S. Validation of an entirely in vitro approach for rapid prototyping of DNA regulatory elements for synthetic biology. Nucleic Acids Research, 2013, 41(5): 3471–3481CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sun Z Z, Yeung E, Hayes C A, Noireaux V, Murray R M. Linear DNA for rapid prototyping of synthetic biological circuits in an Escherichia coli based TX-TL cell-free system. ACS Synthetic Biology, 2014, 3(6): 387–397CrossRefPubMedGoogle Scholar
  46. 46.
    Karzbrun E, Tayar A M, Noireaux V, Bar-Ziv R H. Programmable on-chip DNA compartments as artificial cells. Science, 2014, 345(6198): 829–832CrossRefPubMedGoogle Scholar
  47. 47.
    Elowitz M B, Leibler S. A synthetic oscillatory network of transcriptional regulators. Nature, 2000, 403(6767): 335–338CrossRefPubMedGoogle Scholar
  48. 48.
    Takahashi M K, Hayes C A, Chappell J, Sun Z Z, Murray R M, Noireaux V, Lucks J B. Characterizing and prototyping genetic networks with cell-free transcription-translation reactions. Methods (San Diego, CA), 2015, 86: 60–72CrossRefGoogle Scholar
  49. 49.
    Niederholtmeyer H, Sun Z Z, Hori Y, Yeung E, Verpoorte A, Murray R M, Maerkl S J. Rapid cell-free forward engineering of novel genetic ring oscillators. eLife, 2015, 4: e09771CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Karim A S, Jewett M C. A cell-free framework for rapid biosynthetic pathway prototyping and enzyme discovery. Metabolic Engineering, 2016, 36: 116–126CrossRefPubMedGoogle Scholar
  51. 51.
    Fujii S, Matsuura T, Sunami T, Kazuta Y, Yomo T. In vitro evolution of α-hemolysin using a liposome display. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(42): 16796–16801CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Pardee K, Green A A, Ferrante T, Cameron D E, DaleyKeyser A, Yin P, Collins J J. Paper-based synthetic gene networks. Cell, 2014, 159(4): 940–954CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Dudley Q M, Karim A S, Jewett M C. Cell-free metabolic engineering: Biomanufacturing beyond the cell. Biotechnology Journal, 2015, 10(1): 69–82CrossRefPubMedGoogle Scholar
  54. 54.
    Zhang Y H P. Production of biofuels and biochemicals by in vitro synthetic biosystems: Opportunities and challenges. Biotechnology Advances, 2015, 33(7): 1467–1483CrossRefPubMedGoogle Scholar
  55. 55.
    Zhang Y, Sun J, Zhong J J. Biofuel production by in vitro synthetic enzymatic pathway biotransformation. Current Opinion in Biotechnology, 2010, 21(5): 663–669CrossRefPubMedGoogle Scholar
  56. 56.
    Zawada J F, Yin G, Steiner A R, Yang J, Naresh A, Roy S M, Gold D S, Heinsohn H G, Murray C J. Microscale to manufacturing scaleup of cell-free cytokine production—a new approach for shortening protein production development timelines. Biotechnology and Bioengineering, 2011, 108(7): 1570–1578CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Dudley Q M, Anderson K C, Jewett M C. Cell-free mixing of Escherichia coli crude extracts to prototype and rationally engineer high-titer mevalonate synthesis. ACS Synthetic Biology, 2016Google Scholar
  58. 58.
    Joyce G F. Forty years of in vitro evolution. Angewandte Chemie International Edition, 2007, 46(34): 6420–6436CrossRefPubMedGoogle Scholar
  59. 59.
    Roberts R W, Szostak J W. RNA-peptide fusions for the in vitro selection of peptides and proteins. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(23): 12297–12302CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Hanes J, Pluckthun A. In vitro selection and evolution of functional proteins by using ribosome display. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(10): 4937–4942CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Sumida T, Yanagawa H, Doi N. In vitro selection of fab fragments by mRNA display and gene-linking emulsion PCR. Journal of Nucleic Acids, 2012, 2012: 371–379CrossRefGoogle Scholar
  62. 62.
    Stafford R L, Matsumoto M L, Yin G, Cai Q, Fung J J, Stephenson H, Gill A, You M, Lin S H, Wang WD, Masikat MR, Li X, Penta K, Steiner A R, Baliga R, Murray C J, Thanos C D, Hallam T J, Sato A K. In vitro fab display: A cell-free system for IgG discovery. Protein Engineering, Design & Selection, 2014, 27(4): 97–109CrossRefGoogle Scholar
  63. 63.
    Zhou H, Yong J, Gao H, Li T, Xiao H, Wu Y. Mannanase man23 mutants library construction basing on a novel cell-free protein expression system. Journal of the Science of Food and Agriculture, 2016Google Scholar
  64. 64.
    Dodevski I, Markou G C, Sarkar C A. Conceptual and methodological advances in cell-free directed evolution. Current Opinion in Structural Biology, 2015, 33: 1–7CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Guillen Schlippe Y V, Hartman M C T, Josephson K, Szostak J W. In vitro selection of highly modified cyclic peptides that act as tight binding inhibitors. Journal of the American Chemical Society, 2012, 134(25): 10469–10477CrossRefPubMedCentralGoogle Scholar
  66. 66.
    Miller O J, Bernath K, Agresti J J, Amitai G, Kelly B T, Mastrobattista E, Taly V, Magdassi S, Tawfik D S, Griffiths A D. Directed evolution by in vitro compartmentalization. Nature Methods, 2006, 3(7): 561–570CrossRefPubMedGoogle Scholar
  67. 67.
    Soh S, Banaszak M, Kandere-Grzybowska K, Grzybowski B A. Why cells are microscopic: A transport-time perspective. Journal of Physical Chemistry Letters, 2013, 4(6): 861–865CrossRefPubMedGoogle Scholar
  68. 68.
    Georgi V, Georgi L, Blechert M, Bergmeister M, Zwanzig M, Wustenhagen D A, Bier F F, Jung E, Kubick S. On-chip automation of cell-free protein synthesis: New opportunities due to a novel reaction mode. Lab on a Chip, 2016, 16(2): 269–281CrossRefPubMedGoogle Scholar
  69. 69.
    Deans T L, Cantor C R, Collins J J. A tunable genetic switch based on RNAi and repressor proteins for regulating gene expression in mammalian cells. Cell, 2007, 130(2): 363–372CrossRefPubMedGoogle Scholar
  70. 70.
    Ellis T, Wang X, Collins J J. Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nature Biotechnology, 2009, 27(5): 465–471CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Tawfik D S, Griffiths A D. Man-made cell-like compartments for molecular evolution. Nature Biotechnology, 1998, 16(7): 652–656CrossRefPubMedGoogle Scholar
  72. 72.
    Griffiths A D, Tawfik D S. Miniaturising the laboratory in emulsion droplets. Trends in Biotechnology, 2006, 24(9): 395–402CrossRefPubMedGoogle Scholar
  73. 73.
    Sharma B, Takamura Y, Shimoda T, Biyani M. A bulk subfemtoliter in vitro compartmentalization system using super-fine electrosprays. Scientific Reports, 2016, 6: 26257CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Weitz M, Kim J, Kapsner K, Winfree E, Franco E, Simmel F C. Diversity in the dynamical behaviour of a compartmentalized programmable biochemical oscillator. Nature Chemistry, 2014, 6(4): 295–302CrossRefPubMedGoogle Scholar
  75. 75.
    Kapsner K, Simmel F C. Partitioning variability of a compartmentalized in vitro transcriptional thresholding circuit. ACS Synthetic Biology, 2015, 4(10): 1136–1143CrossRefPubMedGoogle Scholar
  76. 76.
    Sachse R, Dondapati S K, Fenz S F, Schmidt T, Kubick S. Membrane protein synthesis in cell-free systems: From bio-mimetic systems to bio-membranes. FEBS Letters, 2014, 588(17): 2774–2781CrossRefPubMedGoogle Scholar
  77. 77.
    Caschera F, Noireaux V. Compartmentalization of an all-E. coli cellfree expression system for the construction of a minimal cell. Artificial Life, 2016, 22(2): 185–195CrossRefPubMedGoogle Scholar
  78. 78.
    Tan C, Saurabh S, Bruchez M P, Schwartz R, Leduc P. Molecular crowding shapes gene expression in synthetic cellular nanosystems. Nature Nanotechnology, 2013, 8(8): 602–608CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Hovijitra N T, Wuu J J, Peaker B, Swartz J R. Cell-free synthesis of functional aquaporin Z in synthetic liposomes. Biotechnology and Bioengineering, 2009, 104(1): 40–49CrossRefPubMedGoogle Scholar
  80. 80.
    Maeda Y T, Nakadai T, Shin J, Uryu K, Noireaux V, Libchaber A. Assembly of MreB filaments on liposome membranes: A synthetic biology approach. ACS Synthetic Biology, 2012, 1(2): 53–59CrossRefPubMedGoogle Scholar
  81. 81.
    Ishihara G, Goto M, Saeki M, Ito K, Hori T, Kigawa T, Shirouzu M, Yokoyama S. Expression of G protein coupled receptors in a cellfree translational system using detergents and thioredoxin-fusion vectors. Protein Expression and Purification, 2005, 41(1): 27–37CrossRefPubMedGoogle Scholar
  82. 82.
    Pardee K, Green A A, Takahashi MK, Braff D, Lambert G, Lee J W, Ferrante T, Ma D, Donghia N, Fan M, Daringer N M, Bosch I, Dudley D M, O’Connor D H, Gehrke L, Collins J J. Rapid, low-cost detection of Zika virus using programmable biomolecular components. Cell, 2016, 165(5): 1255–1266CrossRefPubMedGoogle Scholar
  83. 83.
    Davies D H, Liang X, Hernandez J E, Randall A, Hirst S, Mu Y, Romero K M, Nguyen T T, Kalantari-Dehaghi M, Crotty S, Baldi P, Villarreal L P, Felgner P L. Profiling the humoral immune response to infection by using proteome microarrays: High-throughput vaccine and diagnostic antigen discovery. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(3): 547–552CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Lu Y, Welsh J P, Chan W, Swartz J R. Escherichia coli-based cell free production of flagellin and ordered flagellin display on virus-like particles. Biotechnology and Bioengineering, 2013, 110(8): 2073–2085CrossRefPubMedGoogle Scholar
  85. 85.
    Kanter G, Yang J, Voloshin A, Levy S, Swartz J R, Levy R. Cell-free production of scFv fusion proteins: An efficient approach for personalized lymphoma vaccines. Blood, 2007, 109(8): 3393–3399CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Lewis D D, Villarreal F D, Wu F, Tan C. Synthetic biology outside the cell: Linking computational tools to cell-free systems. Frontiers in Bioengineering and Biotechnology, 2014, 2: 66CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringUniversity of California DavisDavisUSA

Personalised recommendations