Rhamnolipid synthesis and production with diverse resources

  • Qingxin Li
Review Article


Rhamnolipids are one of the most effective biosurfactants that are of great interest in industrial applications such as enhancing oil recovery, health care, cosmetics, pharmaceutical processes, food processing, detergents for protein folding, and bioremediation due to their unique characteristics such as low toxicity, surface active property to reduce surface/interfacial tensions, and excellent biodegradability. The genes and metabolic pathways for rhamnolipid synthesis have been well elucidated, but its cost-effective production is still challenging. Pseudomonas aeruginosa, the most powerful rhamnolipid producer, is an opportunistic pathogen, which limits its large scale production and applications. Rhamnolipid production using engineered strains other than Pseudomonas aeruginosa such as E. coli and Pseudomonas putida has received much attention. The highest yield of rhamnolipids is achieved when oil-type carbon sources are used, but using cheaper and renewable carbon sources such as lignocellulose would be an attractive strategy to reduce the production cost of rhamnolipids for various industrial applications.


biosurfactant rhamnolipid Pseudomonas waste surface tension 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This research is supported by the Science and Engineering Research Council (SERC) of the Agency for Science, Technology and Research (A*STAR) of Singapore (SERC grant number: 1526004161).


  1. 1.
    Henkel M, Müller M M, Kügler J H, Lovaglio R B, Contiero J, Syldatk C, Hausmann R. Rhamnolipids as biosurfactants from renewable resources: Concepts for next-generation rhamnolipid production. Process Biochemistry, 2012, 47(8): 1207–1219CrossRefGoogle Scholar
  2. 2.
    Shekhar S, Sundaramanickam A, Balasubramanian T. Biosurfactant producing microbes and their potential applications: A review. Critical Reviews in Environmental Science and Technology, 2015, 45(14): 1522–1554CrossRefGoogle Scholar
  3. 3.
    Desai J D, Banat I M. Microbial production of surfactants and their commercial potential. Microbiology and Molecular Biology Reviews, 1997, 61(1): 47–64Google Scholar
  4. 4.
    Banat I M, Franzetti A, Gandolfi I, Bestetti G, Martinotti M G, Fracchia L, Smyth T J, Marchant R. Microbial biosurfactants production, applications and future potential. Applied Microbiology and Biotechnology, 2010, 87(2): 427–444CrossRefGoogle Scholar
  5. 5.
    Banat I M, Marchant A, Nigam P, Gaston S J, Kelly B A, Marchant R. Production, partial characterization, and potential diagnostic use of salicylate hydroxylase from Pseudomonas putida UUC-1. Enzyme and Microbial Technology, 1994, 16(8): 665–670CrossRefGoogle Scholar
  6. 6.
    Deziel E, Lepine F, Dennie D, Boismenu D, Mamer O A, Villemur R. Liquid chromatography/mass spectrometry analysis of mixtures of rhamnolipids produced by Pseudomonas aeruginosa strain 57RP grown on mannitol or naphthalene. Biochimica et Biophysica Acta, 1999, 1440(2-3): 244–252CrossRefGoogle Scholar
  7. 7.
    Abdel-Mawgoud A M, Lepine F, Deziel E. Rhamnolipids: Diversity of structures, microbial origins and roles. Applied Microbiology and Biotechnology, 2010, 86(5): 1323–1336CrossRefGoogle Scholar
  8. 8.
    Cha M, Lee N, Kim M, Lee S. Heterologous production of Pseudomonas aeruginosa EMS1 biosurfactant in Pseudomonas putida. Bioresource Technology, 2008, 99(7): 2192–2199CrossRefGoogle Scholar
  9. 9.
    Gunther N, Nunez A, Fett W, Solaiman D K. Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Applied and Environmental Microbiology, 2005, 71(5): 2288–2293CrossRefGoogle Scholar
  10. 10.
    Janek T, Lukaszewicz M, Krasowska A. Identification and characterization of biosurfactants produced by the Arctic bacterium Pseudomonas putida BD2. Colloids and Surfaces. B, Biointerfaces, 2013, 110: 379–386CrossRefGoogle Scholar
  11. 11.
    Rooney A P, Price N P, Ray K J, Kuo T M. Isolation and characterization of rhamnolipid-producing bacterial strains from a biodiesel facility. FEMS Microbiology Letters, 2009, 295(1): 82–87CrossRefGoogle Scholar
  12. 12.
    Lovaglio R B, Silva V L, Ferreira H, Hausmann R, Contiero J. Rhamnolipids know-how: Looking for strategies for its industrial dissemination. Biotechnology Advances, 2015, 33(8): 1715–1726CrossRefGoogle Scholar
  13. 13.
    Pantazaki A A, Papaneophytou C P, Lambropoulou D A. Simultaneous polyhydroxyalkanoates and rhamnolipids production by Thermus thermophilus HB8. AMB Express, 2011, 1(1): 17CrossRefGoogle Scholar
  14. 14.
    Abouseoud M, Maachi R, Amrane A, Boudergua S, Nabi A. Evaluation of different carbon and nitrogen sources in production of biosurfactant by Pseudomonas fluorescens. Desalination, 2008, 223(1-3): 143–151CrossRefGoogle Scholar
  15. 15.
    Lang S, Wullbrandt D. Rhamnose lipids—biosynthesis, microbial production and application potential. Applied Microbiology and Biotechnology, 1999, 51(1): 22–32CrossRefGoogle Scholar
  16. 16.
    Banat I M, Makkar R S, Cameotra S S. Potential commercial applications of microbial surfactants. Applied Microbiology and Biotechnology, 2000, 53(5): 495–508CrossRefGoogle Scholar
  17. 17.
    Lovaglio R B, dos Santos F J, Jafelicci M Jr, Contiero J. Rhamnolipid emulsifying activity and emulsion stability: pH rules. Colloids and Surfaces. B, Biointerfaces, 2011, 85(2): 301–305CrossRefGoogle Scholar
  18. 18.
    Li Q, Kang C, Wang H, Liu C, Zhang C. Application of microbial enhanced oil recovery technique to Daqing Oilfield. Biochemical Engineering Journal, 2002, 11(2-3): 197–199CrossRefGoogle Scholar
  19. 19.
    Rahim R, Burrows L L, Monteiro M A, Perry M B, Lam J S. Involvement of the rml locus in core oligosaccharide and O polysaccharide assembly in Pseudomonas aeruginosa. Microbiology, 2000, 146: 2803–2814CrossRefGoogle Scholar
  20. 20.
    Olvera C, Goldberg J B, Sanchez R, Soberon-Chavez G. The Pseudomonas aeruginosa algC gene product participates in rhamnolipid biosynthesis. FEMS Microbiology Letters, 1999, 179(1): 85–90CrossRefGoogle Scholar
  21. 21.
    Aguirre-Ramirez M, Medina G, Gonzalez-Valdez A, Grosso-Becerra V, Soberon-Chavez G. The Pseudomonas aeruginosa rmlBDAC operon, encoding dTDP-l-rhamnose biosynthetic enzymes, is regulated by the quorum-sensing transcriptional regulator RhlR and the alternative sigma factor sigmaS. Microbiology, 2012, 158: 908–916CrossRefGoogle Scholar
  22. 22.
    Marumo K, Lindqvist L, Verma N, Weintraub A, Reeves P R, Lindberg A A. Enzymatic synthesis and isolation of thymidine diphosphate-6-deoxy-d-xylo-4-hexulose and thymidine diphosphate-l-rhamnose. Production using cloned gene products and separation by HPLC. European Journal of Biochemistry, 1992, 204(2): 539–545Google Scholar
  23. 23.
    Ochsner U A, Fiechter A, Reiser J. Isolation, characterization, and expression in Escherichia coli of the Pseudomonas aeruginosa rhlAB genes encoding a rhamnosyltransferase involved in rhamnolipid biosurfactant synthesis. Journal of Biological Chemistry, 1994, 269(31): 19787–19795Google Scholar
  24. 24.
    Kutchma A J, Hoang T T, Schweizer H P. Characterization of a Pseudomonas aeruginosa fatty acid biosynthetic gene cluster: purification of acyl carrier protein (ACP) and malonyl-coenzyme A: ACP transacylase (FabD). Journal of Bacteriology, 1999, 181(17): 5498–5504Google Scholar
  25. 25.
    Hoang T T, Schweizer H P. Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): A target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. Journal of Bacteriology, 1999, 181(17): 5489–5497Google Scholar
  26. 26.
    Hoang T T, Schweizer H P. Fatty acid biosynthesis in Pseudomonas aeruginosa: Cloning and characterization of the fabAB operon encoding beta-hydroxyacyl-acyl carrier protein dehydratase (FabA) and beta-ketoacyl-acyl carrier protein synthase I (FabB). Journal of Bacteriology, 1997, 179(17): 5326–5332CrossRefGoogle Scholar
  27. 27.
    Ochsner U A, Reiser J. Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(14): 6424–6428CrossRefGoogle Scholar
  28. 28.
    Ochsner U A, Koch A K, Fiechter A, Reiser J. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Journal of Bacteriology, 1994, 176(7): 2044–2054CrossRefGoogle Scholar
  29. 29.
    Parsek M R, Val D L, Hanzelka B L, Cronan J E Jr, Greenberg E P. Acyl homoserine-lactone quorum-sensing signal generation. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(8): 4360–4365CrossRefGoogle Scholar
  30. 30.
    Medina G, Juarez K, Soberon-Chavez G. The Pseudomonas aeruginosa rhlAB operon is not expressed during the logarithmic phase of growth even in the presence of its activator RhlR and the autoinducer N-butyryl-homoserine lactone. Journal of Bacteriology, 2003, 185(1): 377–380CrossRefGoogle Scholar
  31. 31.
    Fuqua C, Greenberg E P. Self perception in bacteria: Quorum sensing with acylated homoserine lactones. Current Opinion in Microbiology, 1998, 1(2): 183–189CrossRefGoogle Scholar
  32. 32.
    Dobler L, Vilela L F, Almeida R V, Neves B C. Rhamnolipids in perspective: Gene regulatory pathways, metabolic engineering, production and technological forecasting. New Biotechnology, 2016, 33(1): 123–135CrossRefGoogle Scholar
  33. 33.
    Dusane D H, Zinjarde S S, Venugopalan V P, McLean R J, WeberM M, Rahman P K. Quorum sensing: Implications on rhamnolipid biosurfactant production. Biotechnology & Genetic Engineering Reviews, 2010, 27: 159–184CrossRefGoogle Scholar
  34. 34.
    Benincasa M, Contiero J, Manresa M A, Moraes I O. Rhamnolipid production by Pseudomonas aeruginosa LBI growing on soapstock as the sole carbon source. Journal of Food Engineering, 2002, 54(4): 283–288CrossRefGoogle Scholar
  35. 35.
    Muller M M, Hormann B, Syldatk C, Hausmann R. Pseudomonas aeruginosa PAO1 as a model for rhamnolipid production in bioreactor systems. Applied Microbiology and Biotechnology, 2010, 87(1): 167–174CrossRefGoogle Scholar
  36. 36.
    Sim L, Ward O P, Li Z Y. Production and characterisation of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. Journal of Industrial Microbiology & Biotechnology, 1997, 19(4): 232–238CrossRefGoogle Scholar
  37. 37.
    Reiling H E, Thanei-Wyss U, Guerra-Santos L H, Hirt R, Kappeli O, Fiechter A. Pilot plant production of rhamnolipid biosurfactant by Pseudomonas aeruginosa. Applied and Environmental Microbiology, 1986, 51(5): 985–989Google Scholar
  38. 38.
    Wittgens A, Tiso T, Arndt T T, Wenk P, Hemmerich J, Muller C, Wichmann R, Kupper B, Zwick M, Wilhelm S, Hausmann R, Syldatk C, Rosenau F, Blank L M. Growth independent rhamnolipid production from glucose using the non-pathogenic Pseudomonas putida KT2440. Microbial Cell Factories, 2011, 10: 80CrossRefGoogle Scholar
  39. 39.
    Banat I M, Satpute S K, Cameotra S S, Patil R, Nyayanit N V. Cost effective technologies and renewable substrates for biosurfactants’ production. Frontiers in Microbiology, 2014, 5: 1–18CrossRefGoogle Scholar
  40. 40.
    Makkar R, Cameotra S. An update on the use of unconventional substrates for biosurfactant production and their new applications. Applied Microbiology and Biotechnology, 2002, 58(4): 428–434CrossRefGoogle Scholar
  41. 41.
    Wei Y H, Chou C L, Chang J S. Rhamnolipid production by indigenous Pseudomonas aeruginosa J4 originating from petrochemical wastewater. Biochemical Engineering Journal, 2005, 27(2): 146–154CrossRefGoogle Scholar
  42. 42.
    Müller M M, Kügler J H, Henkel M, Gerlitzki M, Hörmann B, Pöhnlein M, Syldatk C, Hausmann R. Rhamnolipids—Next generation surfactants? Journal of Biotechnology, 2012, 162(4): 366–380CrossRefGoogle Scholar
  43. 43.
    Wu J Y, Yeh K L, Lu W B, Lin C L, Chang J S. Rhamnolipid production with indigenous Pseudomonas aeruginosa EM1 isolated from oil-contaminated site. Bioresource Technology, 2008, 99(5): 1157–1164CrossRefGoogle Scholar
  44. 44.
    Shreve G S, Inguva S, Gunnam S. Rhamnolipid biosurfactant enhancement of hexadecane biodegradation by Pseudomonas aeruginosa. Molecular Marine Biology and Biotechnology, 1995, 4(4): 331–337Google Scholar
  45. 45.
    Arino S, Marchal R, Vandecasteele J P. Identification and production of a rhamnolipidic biosurfactant by a Pseudomonas species. Applied Microbiology and Biotechnology, 1996, 45(1): 162–168CrossRefGoogle Scholar
  46. 46.
    Trummler K, Effenberger F, Syldatk C. An integrated microbial/ enzymatic process for production of rhamnolipids and l-(+)-rhamnose from rapeseed oil with Pseudomonas sp. DSM 2874. European Journal of Lipid Science and Technology, 2003, 105(10): 563–571CrossRefGoogle Scholar
  47. 47.
    Chen S Y, Lu W B, Wei Y H, Chen W M, Chang J S. Improved production of biosurfactant with newly isolated Pseudomonas aeruginosa S2. Biotechnology Progress, 2007, 23(3): 661–666CrossRefGoogle Scholar
  48. 48.
    Jeong H S, Lim D J, Hwang S H, Ha S D, Kong J Y. Rhamnolipid production by Pseudomonas aeruginosa immobilised in polyvinyl alcohol beads. Biotechnology Letters, 2004, 26(1): 35–39CrossRefGoogle Scholar
  49. 49.
    de Sousa J R, da Costa Correia J A, de Almeida J G L, Rodrigues S, Pessoa O D L, Melo V M M, Gonçalves L R B. Evaluation of a coproduct of biodiesel production as carbon source in the production of biosurfactant by P. aeruginosa MSIC02. Process Biochemistry, 2011, 46(9): 1831–1839CrossRefGoogle Scholar
  50. 50.
    Nitschke M, Costa S G, Haddad R, Goncalves L A, Eberlin M N, Contiero J. Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Biotechnology Progress, 2005, 21(5): 1562–1566CrossRefGoogle Scholar
  51. 51.
    Benincasa M, Abalos A, Oliveira I, Manresa A. Chemical structure, surface properties and biological activities of the biosurfactant produced by Pseudomonas aeruginosa LBI from soapstock. Antonie van Leeuwenhoek, 2004, 85(1): 1–8CrossRefGoogle Scholar
  52. 52.
    Nitschke M, Costa S G, Contiero J. Structure and applications of a rhamnolipid surfactant produced in soybean oil waste. Applied Biochemistry and Biotechnology, 2010, 160(7): 2066–2074CrossRefGoogle Scholar
  53. 53.
    Benincasa M, Accorsini F R. Pseudomonas aeruginosa LBI production as an integrated process using the wastes from sunflower-oil refining as a substrate. Bioresource Technology, 2008, 99(9): 3843–3849CrossRefGoogle Scholar
  54. 54.
    de Lima C J, Franca F P, Servulo E F, Resende M M, Cardoso V L. Enhancement of rhamnoplipid production in residual soybean oil by an isolated strain of Pseudomonas aeruginosa. Applied Biochemistry and Biotechnology, 2007, 137–140(1): 463–470Google Scholar
  55. 55.
    Abalos A, Pinazo A, Infante M R, Casals M, García F, Manresa A. Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir, 2001, 17(5): 1367–1371CrossRefGoogle Scholar
  56. 56.
    Raza Z A, Khan M S, Khalid Z M, Rehman A. Production kinetics and tensioactive characteristics of biosurfactant from a Pseudomonas aeruginosa mutant grown on waste frying oils. Biotechnology Letters, 2006, 28(20): 1623–1631CrossRefGoogle Scholar
  57. 57.
    Haba E, Espuny M J, Busquets M, Manresa A. Screening and production of rhamnolipids by Pseudomonas aeruginosa 47T2 NCIB 40044 from waste frying oils. Journal of Applied Microbiology, 2000, 88(3): 379–387CrossRefGoogle Scholar
  58. 58.
    Mercadé M E, Manresa M A, Robert M, Espuny M J, de Andrés C, Guinea J. Olive oil mill effluent (OOME). New substrate for biosurfactant production. Bioresource Technology, 1993, 43(1): 1–6CrossRefGoogle Scholar
  59. 59.
    Kaskatepe B, Yildiz S, Gumustas M, Ozkan S A. Biosurfactant production by Pseudomonas aeruginosain kefir and fish meal. Brazilian Journal of Microbiology, 2015, 46(3): 855–859CrossRefGoogle Scholar
  60. 60.
    Sudhakar B P, Vaidya A N, Bal A S, Kapur R, Juwarkar A, Khanna P. Kinetics of biosurfactant production by Pseudomonas aeruginosa strain BS2 from industrial wastes. Biotechnology Letters, 1996, 18(3): 263–268Google Scholar
  61. 61.
    Dubey K, Juwarkar A. Distillery and curd whey wastes as viable alternative sources for biosurfactant production. World Journal of Microbiology & Biotechnology, 2001, 17(1): 61–69CrossRefGoogle Scholar
  62. 62.
    Koch A K, Reiser J, Kappeli O, Fiechter A. Genetic construction of lactose-utilizing strains of Pseudomonas aeruginosa and their application in biosurfactant production. Nature Biotechnology, 1988, 6(11): 1335–1339CrossRefGoogle Scholar
  63. 63.
    Colak A K, Kahraman H. The use of raw cheese whey and olive oil mill wastewater for rhamnolipid production by recombinant Pseudomonas aeruginosa. Environmental and Experimental Biology, 2013, 11: 125–135Google Scholar
  64. 64.
    Raza Z A, Ahmad N, Kamal S. Multi-response optimization of rhamnolipid production using grey rational analysis in Taguchi method. Biotechnology Reports (Amsterdam, Netherlands), 2014, 3: 86–94Google Scholar
  65. 65.
    Patel R M, Desai A J. Biosurfactant production by Pseudomonas aeruginosa GS3 from molasses. Letters in Applied Microbiology, 1997, 25(2): 91–94CrossRefGoogle Scholar
  66. 66.
    Gudiña E J, Rodrigues A I, Alves E, Domingues M R, Teixeira J A, Rodrigues L R. Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Bioresource Technology, 2015, 177: 87–93CrossRefGoogle Scholar
  67. 67.
    Raza Z A, Khan M S, Khalid Z M. Physicochemical and surfaceactive properties of biosurfactant produced using molasses by a Pseudomonas aeruginosa mutant. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 2007, 42(1): 73–80CrossRefGoogle Scholar
  68. 68.
    Prabu R, Kuila A, Ravishankar R, Rao P V C, Choudary N V, Velankar H R. Microbial rhamnolipid production in wheat straw hydrolysate supplemented with basic salts. RSC Advances, 2015, 5(64): 51642–51649CrossRefGoogle Scholar
  69. 69.
    Henkel M, Schmidberger A, Vogelbacher M, Kuhnert C, Beuker J, Bernard T, Schwartz T, Syldatk C, Hausmann R. Kinetic modeling of rhamnolipid production by Pseudomonas aeruginosa PAO1 including cell density-dependent regulation. Applied Microbiology and Biotechnology, 2014, 98(16): 7013–7025CrossRefGoogle Scholar
  70. 70.
    Syldatk C, Lang S, Matulovic U, Wagner F. Production of four interfacial active rhamnolipids from n-alkanes or glycerol by resting cells of Pseudomonas species DSM 2874. Zeitschrift für Naturforschung. C, 1985, 40(1-2): 61–67Google Scholar
  71. 71.
    Dumont M J, Narine S S. Characterization of soapstock and deodorizer distillates of vegetable oils using gas chromatography. Lipid Technology, 2008, 20(6): 136–138CrossRefGoogle Scholar
  72. 72.
    Makkar R S, Cameotra S S, Banat I M. Advances in utilization of renewable substrates for biosurfactant production. AMB Express, 2011, 1(1): 5CrossRefGoogle Scholar
  73. 73.
    Keegstra K. Plant cell walls. Plant Physiology, 2010, 154(2): 483–486CrossRefGoogle Scholar
  74. 74.
    Morais S, Morag E, Barak Y, Goldman D, Hadar Y, Lamed R, Shoham Y, Wilson D B, Bayer E A. Deconstruction of lignocellulose into soluble sugars by native and designer cellulosomes. mBio, 2012, 3(6): 214104CrossRefGoogle Scholar
  75. 75.
    Li Q, Ng WT, Wu J C. Isolation, characterization and application of a cellulose-degrading strain Neurospora crassa S1 from oil palm empty fruit bunch. Microbial Cell Factories, 2014, 13(1): 157CrossRefGoogle Scholar
  76. 76.
    Miller E N, Jarboe L R, Turner P C, Pharkya P, Yomano L P, York S W, Nunn D, Shanmugam K T, Ingram L O. Furfural inhibits growth by limiting sulfur assimilation in ethanologenic Escherichia coli strain LY180. Applied and Environmental Microbiology, 2009, 75(19): 6132–6141CrossRefGoogle Scholar
  77. 77.
    Koopman F, Wierckx N, de Winde J H, Ruijssenaars H J. Identification and characterization of the furfural and 5-(hydroxymethyl) furfural degradation pathways of Cupriavidus basilensis HMF14. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(11): 4919–4924CrossRefGoogle Scholar
  78. 78.
    Lawniczak L, Marecik R, Chrzanowski L. Contributions of biosurfactants to natural or induced bioremediation. Applied Microbiology and Biotechnology, 2013, 97(6): 2327–2339CrossRefGoogle Scholar
  79. 79.
    Mukherjee S, Das P, Sen R. Towards commercial production of microbial surfactants. Trends in Biotechnology, 2006, 24(11): 509–515CrossRefGoogle Scholar
  80. 80.
    Perfumo A, Rudden M, Smyth T J, Marchant R, Stevenson P S, Parry N J, Banat I M. Rhamnolipids are conserved biosurfactants molecules: Implications for their biotechnological potential. Applied Microbiology and Biotechnology, 2013, 97(16): 7297–7306CrossRefGoogle Scholar
  81. 81.
    Soberon-Chavez G, Lepine F, Deziel E. Production of rhamnolipids by Pseudomonas aeruginosa. Applied Microbiology and Biotechnology, 2005, 68(6): 718–725CrossRefGoogle Scholar
  82. 82.
    Aktiengesellschaft H. Pseudomonas aeruginosa and its use in a process for the biotechnological preparation of l-rhamnose. US Patents, 5501966 A, 1996Google Scholar
  83. 83.
    Ochsner U A, Reiser J, Fiechter A, Witholt B. Production of Pseudomonas aeruginosa rhamnolipid biosurfactants in heterologous hosts. Applied and Environmental Microbiology, 1995, 61(9): 3503–3506Google Scholar
  84. 84.
    Cabrera-Valladares N, Richardson A P, Olvera C, Trevino L G, Deziel E, Lepine F, Soberon-Chavez G. Monorhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids (HAAs) production using Escherichia coli as a heterologous host. Applied Microbiology and Biotechnology, 2006, 73(1): 187–194CrossRefGoogle Scholar
  85. 85.
    Guerra-Santos L, Kappeli O, Fiechter A. Pseudomonas aeruginosa biosurfactant production in continuous culture with glucose as carbon source. Applied and Environmental Microbiology, 1984, 48(2): 301–305Google Scholar
  86. 86.
    Gudina E J, Fernandes E C, Rodrigues A I, Teixeira J A, Rodrigues L R. Biosurfactant production by Bacillus subtilis using corn steep liquor as culture medium. Frontiers in Microbiology, 2015, 6: 59Google Scholar
  87. 87.
    Pauly M, Keegstra K. Plant cell wall polymers as precursors for biofuels. Current Opinion in Plant Biology, 2010, 13(3): 305–312CrossRefGoogle Scholar
  88. 88.
    Zhang D, Ong Y L, Li Z, Wu J C. Optimization of dilute acidcatalyzed hydrolysis of oil palm empty fruit bunch for high yield production of xylose. Chemical Engineering Journal, 2012, 181–182: 636–642CrossRefGoogle Scholar
  89. 89.
    Li Q, Ng W T, Puah S M, Bhaskar R V, Soh L S, Macbeath C, Parakattil P, Green P, Wu J C. Efficient production of fermentable sugars from oil palm empty fruit bunch by combined use of acid and whole cell culture-catalyzed hydrolyses. Biotechnology and Applied Biochemistry, 2014, 61(4): 426–431CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of Chemical & Engineering SciencesAgency for Science, Technology, and ResearchJurong Island, SingaporeSingapore

Personalised recommendations