Synthetically engineered microbes reveal interesting principles of cooperation

  • Michael D. Dressler
  • Corey J. Clark
  • Chelsea A. Thachettu
  • Yasmine Zakaria
  • Omar Tonsi Eldakar
  • Robert P. Smith
Review Article


Cooperation is ubiquitous in biological systems. However, if natural selection favors traits that confer an advantage to one individual over another, then helping others would be paradoxical. Nevertheless, cooperation persists and is critical in maintaining homeostasis in systems ranging from populations of bacteria to groupings of mammals. Developing an understanding of the dynamics and mechanisms by which cooperation operates is critical in understanding ecological and evolutionary relationships. Over the past decade, synthetic biology has emerged as a powerful tool to study social dynamics. By engineering rationally controlled and modulatable behavior into microbes, we have increased our overall understanding of how cooperation enhances, or conversely constrains, populations. Furthermore, it has increased our understanding of how cooperation is maintained within populations, which may provide a useful framework to influence populations by altering cooperation. As many bacterial pathogens require cooperation to infect the host and survive, the principles developed using synthetic biology offer promise of developing novel tools and strategies to treat infections, which may reduce the use of antimicrobial agents. Overall, the use of engineered cooperative microbes has allowed the field to verify existing, and develop novel, theories that may govern cooperative behaviors at all levels of biology.


synthetic biology engineered bacteria cooperation cheater quorum sensing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



Our research is supported by a President’s Faculty Research and Development Grant #335318 and #335304 through Nova Southeastern University. The author’s declare that they do not have any conflicts of interest.


  1. 1.
    Nowak M A. Five rules for the evolution of cooperation. Science, 2006, 314(5805): 1560–1563CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Axelrod R, Hamilton W D. The evolution of cooperation. Science, 1981, 211(4489): 1390–1396CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Fehr E, Fischbacher U. Social norms and human cooperation. Trends in Cognitive Sciences, 2004, 8(4): 185–190CrossRefPubMedGoogle Scholar
  4. 4.
    Shan W, Hamilton W. Country—specific advantage and international cooperation. Strategic Management Journal, 1991, 12(6): 419–432CrossRefGoogle Scholar
  5. 5.
    Hardin G. The tragedy of the commons. Science, 1968, 162(3859): 1243–1248CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Feeny D, Berkes F, McCay B J, Acheson J M. The tragedy of the commons: twenty-two years later. Human Ecology, 1990, 18(1): 1–19CrossRefPubMedGoogle Scholar
  7. 7.
    Hamilton W. The evolution of altruistic behavior. American Naturalist, 1963, 97(896): 354–356CrossRefGoogle Scholar
  8. 8.
    Eldakar O T, Wilson D S. Eight criticisms not to make about group selection. Evolution, 2011, 65(6): 1523–1526CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Wilson D S, Wilson E O. Rethinking the theoretical foundation of sociobiology. Quarterly Review of Biology, 2007, 82(4): 327–348CrossRefPubMedGoogle Scholar
  10. 10.
    Rapoport A, Chammah A M. Prisoner’s dilemma: A study in conflict and cooperation. Michigan: University of Michigan press, 1965: 31–44CrossRefGoogle Scholar
  11. 11.
    Doebeli M, Hauert C. Models of cooperation based on the Prisoner’s Dilemma and the Snowdrift game. Ecology Letters, 2005, 8(7): 748–766CrossRefGoogle Scholar
  12. 12.
    Allee W C. Cooperation among animals. American Journal of Sociology, 1951, 1: 93–95Google Scholar
  13. 13.
    Seger J. Cooperation and conflict in social insects. Behavioural Ecology: An Evolutionary Approach, 1991, 338–373Google Scholar
  14. 14.
    West S A, El Mouden C, Gardner A. Sixteen common misconceptions about the evolution of cooperation in humans. Evolution and Human Behavior, 2011, 32(4): 231–262CrossRefGoogle Scholar
  15. 15.
    Gintis H, Bowles S, Boyd R, Fehr E. Explaining altruistic behavior in humans. Evolution and Human Behavior, 2003, 24(3): 153–172CrossRefGoogle Scholar
  16. 16.
    Sober E, Wilson D S. Unto others: The evolution and psychology of unselfish behavior. Massachusetts: Harvard University Press, 1999, 6–14Google Scholar
  17. 17.
    Tanouchi Y, Smith R, You L. Engineering microbial systems to explore ecological and evolutionary dynamics. Current Opinion in Biotechnology, 2012, 23(5): 791–797CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Benner S A, Sismour A M. Synthetic biology. Nature Reviews. Genetics, 2005, 6(7): 533–543CrossRefPubMedGoogle Scholar
  19. 19.
    Jusiak B, Daniel R, Farzadfard F, Nissim L, Purcell O, Rubens J, Lu T K. Synthetic gene circuits. Reviews in Cell Biology and Molecular Medicine, 2014, 1–56Google Scholar
  20. 20.
    Khalil A S, Collins J J. Synthetic biology: Applications come of age. Nature Reviews. Genetics, 2010, 11(5): 367–379CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Bracho O R, Manchery C, Haskell E C, Blanar C A, Smith R P. Circumvention of learning increases intoxication efficacy of nematicidal engineered bacteria. ACS Synthetic Biology, 2016, 5(3): 241–249CrossRefPubMedGoogle Scholar
  22. 22.
    Escalante A E, Rebolleda-Gómez M, Benítez M, Travisano M. Ecological perspectives on synthetic biology: Insights from microbial population biology. Frontiers in Microbiology, 2015, 6: 1–10CrossRefGoogle Scholar
  23. 23.
    Pianka E R. On r-and K-selection. American Naturalist, 1970, 104(940): 592–597CrossRefGoogle Scholar
  24. 24.
    Miller M B, Bassler B L. Quorum sensing in bacteria. Annual Review of Microbiology, 2001, 55(1): 165–199CrossRefPubMedGoogle Scholar
  25. 25.
    Berendsen R L, Pieterse C M, Bakker P A. The rhizosphere microbiome and plant health. Trends in Plant Science, 2012, 17(8): 478–486CrossRefPubMedGoogle Scholar
  26. 26.
    Antunes L C M, Ferreira R B R, Buckner M M C, Finlay B B. Quorum sensing in bacterial virulence. Microbiology, 2010, 156(8): 2271–2282CrossRefPubMedGoogle Scholar
  27. 27.
    De Kievit T R, Gillis R, Marx S, Brown C, Iglewski B H. Quorumsensing genes in Pseudomonas aeruginosa biofilms: Their role and expression patterns. Applied and Environmental Microbiology, 2001, 67(4): 1865–1873CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    De Kievit T R, Iglewski B H. Bacterial quorum sensing in pathogenic relationships. Infection and Immunity, 2000, 68(9): 4839–4849CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Stewart P S, Costerton J W. Antibiotic resistance of bacteria in biofilms. Lancet, 2001, 358(9276): 135–138CrossRefPubMedGoogle Scholar
  30. 30.
    Darch S E, West S A, Winzer K, Diggle S P. Density-dependent fitness benefits in quorum-sensing bacterial populations. Proceedings of the National Academy of Sciences, 2012: 8259–8263Google Scholar
  31. 31.
    Pai A, Tanouchi Y, You L. Optimality and robustness in quorum sensing (QS)-mediated regulation of a costly public good enzyme. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(48): 19810–19815CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    An J H, Goo E, Kim H, Seo Y S, Hwang I. An J H, Goo E, Kim H, Seo Y-S, Hwang I. Bacterial quorum sensing and metabolic slowing in a cooperative population. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(41): 14912–14917CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Allee W, Emerson A, Park O, Park T, Schmidt K. Principles of Animal Ecology. Philadelphia, Pennsylvania, USA, 1949, 416–425Google Scholar
  34. 34.
    Driscoll W W, Espinosa N J, Eldakar O T, Hackett J D. Allelopathy as an emergent, exploitable public good in the bloom-forming microalga Prymnesium parvum. Evolution, 2013, 67(6): 1582–1590CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Liebhold A M, Tobin P C. Exploiting the Achilles heels of pest invasions: Allee effects, stratified dispersal and management of forest insect establishment and spread. New Zealand Journal of Forestry Science, 2010, 40: S25–S33Google Scholar
  36. 36.
    Robinet C, Lance D R, Thorpe K W, Onufrieva K S, Tobin P C, Liebhold A M. Dispersion in time and space affect mating success and Allee effects in invading gypsy moth populations. Journal of Animal Ecology, 2008, 77(5): 966–973CrossRefPubMedGoogle Scholar
  37. 37.
    Tobin P C, Berec L, Liebhold A M. Exploiting Allee effects for managing biological invasions. Ecology Letters, 2011, 14(6): 615–624CrossRefPubMedGoogle Scholar
  38. 38.
    Hackney E E, McGraw J B. Experimental demonstration of an Allee effect in American ginseng. Conservation Biology, 2001, 15(1): 129–136CrossRefGoogle Scholar
  39. 39.
    Smith R, Tan C, Srimani J, Pai A, Riccione K, Song H, You L. Programmed Allee effect results in a tradeoff between population spread and survival. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(5): 1969–1974CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Myers R A, Hutchings J A, Barrowman N J. Why do fish stocks collapse? The example of cod in Atlantic Canada. Ecological Applications, 1997, 7(1): 91–106CrossRefGoogle Scholar
  41. 41.
    Myers R, Barrowman N, Hutchings J, Rosenberg A. Population dynamics of exploited fish stocks at low population levels. Science, 1995, 269(5227): 1106–1108CrossRefPubMedGoogle Scholar
  42. 42.
    Dai L, Vorselen D, Korolev K S, Gore J. Generic indicators for loss of resilience before a tipping point leading to population collapse. Science, 2012, 336(6085): 1175–1177CrossRefPubMedGoogle Scholar
  43. 43.
    Dai L, Korolev K S, Gore J. Relation between stability and resilience determines the performance of early warning signals under different environmental drivers. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(32): 10056–10061CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Liebhold A M, Tobin P C. Population ecology of insect invasions and their management. Annual Review of Entomology, 2008, 53(1): 387–408CrossRefPubMedGoogle Scholar
  45. 45.
    Visick K L, Foster J, Doino J, McFall-Ngai M, Ruby E G. Vibrio fischeri lux genes play an important role in colonization and development of the host light organ. Journal of Bacteriology, 2000, 182(16): 4578–4586CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Bahassi E M, O’Dea M H, Allali N, Messens J, Gellert M, Couturier M. Interactions of CcdB with DNA gyrase. Journal of Biological Chemistry, 1999, 274(16): 10936–10944CrossRefPubMedGoogle Scholar
  47. 47.
    Dai L, Korolev K S, Gore J. Slower recovery in space before collapse of connected populations. Nature, 2013, 496(7445): 355–358CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Ratzke C, Gore J. Self-organized patchiness facilitates survival in a cooperatively growing Bacillus subtilis population. Nature Microbiology, 2016: 16022Google Scholar
  49. 49.
    Wong C M, Zhou Y, Ng R W, Kung H F, Jin D Y. Cooperation of yeast peroxiredoxins Tsa1p and Tsa2p in the cellular defense against oxidative and nitrosative stress. Journal of Biological Chemistry, 2002, 277(7): 5385–5394CrossRefPubMedGoogle Scholar
  50. 50.
    Boulant J A. Hypothalamic mechanisms in thermoregulation. Federation Proceedings, 1981, 40(14): 2843-50PubMedGoogle Scholar
  51. 51.
    Stephens P A, Frey-Roos F, Arnold W, Sutherland W J. Model complexity and population predictions. The alpine marmot as a case study. Journal of Animal Ecology, 2002, 71(2): 343–361Google Scholar
  52. 52.
    Liermann H, Hilborn. Depensation: Evidence, models and implications. Fish and Fisheries, 2001, 2(1): 33–58CrossRefGoogle Scholar
  53. 53.
    Aizenman E, Engelberg-Kulka H, Glaser G. An Escherichia coli chromosomal “addiction module” regulated by guanosine 3',5'-bispyrophosphate: A model for programmed bacterial cell death. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(12): 6059–6063CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Misselwitz B, Barrett N, Kreibich S, Vonaesch P, Andritschke D, Rout S, Weidner K, Sormaz M, Songhet P, Horvath P, Chabria M, Vogel V, Spori D M, Jenny P, Hardt W D. Near surface swimming of Salmonella typhimurium explains target-site selection and cooperative invasion. PLoS Pathogens, 2012, 8(7): e1002810CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Tan C, Smith R P, Srimani J, Riccione K, Prasada S, Kuehn M, You L. The inoculum effect and band-pass bacterial response to periodic antibiotic treatment. Molecular Systems Biology, 2012, 8(1): 679–688Google Scholar
  56. 56.
    Lee H H, Molla M N, Cantor C R, Collins J J. Bacterial charity work leads to population-wide resistance. Nature, 2010, 467(7311): 82–85CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Vega N M, Allison K R, Samuels A N, Klempner M S, Collins J J. Salmonella typhimurium intercepts Escherichia coli signaling to enhance antibiotic tolerance. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(35): 14420–14425CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Meredith H R, Srimani J K, Lee A J, Lopatkin A J, You L. Collective antibiotic tolerance: Mechanisms, dynamics and intervention. Nature Chemical Biology, 2015, 11(3): 182–188CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Nedelcu A M, Driscoll W W, Durand P M, Herron M D, Rashidi A. On the paradigm of altruistic suicide in the unicellular world. Evolution, 2011, 65(1): 3–20CrossRefPubMedGoogle Scholar
  60. 60.
    Ackermann M, Stecher B, Freed N E, Songhet P, Hardt W D, Doebeli M. Self-destructive cooperation mediated by phenotypic noise. Nature, 2008, 454(7207): 987–990CrossRefPubMedGoogle Scholar
  61. 61.
    Rice K C, Bayles K W. Death’s toolbox: Examining the molecular components of bacterial programmed cell death. Molecular Microbiology, 2003, 50(3): 729–738CrossRefPubMedGoogle Scholar
  62. 62.
    Ameisen J C. The origin of programmed cell death. Science, 1996, 272(5266): 1278–1279CrossRefPubMedGoogle Scholar
  63. 63.
    Brown S P, West S A, Diggle S P, Griffin A S. Social evolution in micro-organisms and a Trojan horse approach to medical intervention strategies. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 2009, 364(1533): 3157–3168CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Moran N A, Degnan P H, Santos S R, Dunbar H E, Ochman H. The players in a mutualistic symbiosis: Insects, bacteria, viruses, and virulence genes. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(47): 16919–16926CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Breznak J A. Symbiotic relationships between termites and their intestinal microbiota. Symposia of the Society for Experimental Biology, 1975, 29: 559–580Google Scholar
  66. 66.
    Glaser R. The intracellular bacteria of the cockroach in relation to symbiosis. Journal of Parasitology, 1946, 32(5): 483–489CrossRefPubMedGoogle Scholar
  67. 67.
    Uhlig H H, Powrie F. Dendritic cells and the intestinal bacterial flora: a role for localized mucosal immune responses. Journal of Clinical Investigation, 2003, 112(5): 648–651CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Wintermute E H, Silver P A. Dynamics in the mixed microbial concourse. Genes & Development, 2010, 24(23): 2603–2614CrossRefGoogle Scholar
  69. 69.
    Wintermute E H, Silver P A. Emergent cooperation in microbial metabolism. Molecular Systems Biology, 2010, 6(1): 820–833Google Scholar
  70. 70.
    Shou W, Ram S, Vilar J M G. Synthetic cooperation in engineered yeast populations. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(6): 1877–1882CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Brenner K, Karig D K, Weiss R, Arnold F H. Engineered bidirectional communication mediates a consensus in a microbial biofilm consortium. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(44): 17300–17304CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Brenner K, You L, Arnold F H. Engineering microbial consortia: A new frontier in synthetic biology. Trends in Biotechnology, 2008, 26(9): 483–489CrossRefPubMedGoogle Scholar
  73. 73.
    Hu B, Du J, Zou R Y, Yuan Y J. An environment-sensitive synthetic microbial ecosystem. PLoS One, 2010, 5(5): e10619CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Kerner A, Park J, Williams A, Lin X N. A programmable Escherichia coli consortium via tunable symbiosis. PLoS One, 2012, 7(3): e34032CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Mee M T, Collins J J, Church G M, Wang H H. Syntrophic exchange in synthetic microbial communities. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(20): 2149–2156CrossRefGoogle Scholar
  76. 76.
    Berryman A A. The orgins and evolution of predator-prey theory. Ecology, 1992, 73(5): 1530–1535CrossRefGoogle Scholar
  77. 77.
    Balagadde F K, Song H, Ozaki J, Collins C H, Barnet M, Arnold F H, Quake S R, You L. A synthetic Escherichia coli predator-prey ecosystem. Molecular Systems Biology, 2008, 4: 187CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Wangersky P J. Lotka-Volterra population models. Annual Review of Ecology and Systematics, 1978, 9(1): 189–218CrossRefGoogle Scholar
  79. 79.
    Sun G Q, Jin Z, Liu Q X, Li L. Dynamical complexity of a spatial predator-prey model with migration. Ecological Modelling, 2008, 219(1-2): 248–255CrossRefGoogle Scholar
  80. 80.
    Yuan S, Xu C, Zhang T. Spatial dynamics in a predator-prey model with herd behavior. Chaos (Woodbury, N.Y.), 2013, 23(3): 033102CrossRefGoogle Scholar
  81. 81.
    Song H, Payne S, Gray M, You L. Spatiotemporal modulation of biodiversity in a synthetic chemical-mediated ecosystem. Nature Chemical Biology, 2009, 5(12): 929–935CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Yamamura N, Higashi M, Behera N, YuichiroWakano J. Evolution of mutualism through spatial effects. Journal of Theoretical Biology, 2004, 226(4): 421–428CrossRefPubMedGoogle Scholar
  83. 83.
    Poisot T, Bever J D, Thrall P H, Hochberg M E. Dispersal and spatial heterogeneity allow coexistence between enemies and protective mutualists. Ecology and Evolution, 2014, 4(19): 3841–3850CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Park J, Kerner A, Burns M A, Lin X N. Microdroplet-enabled highly parallel co-cultivation of microbial communities. PLoS One, 2011, 6(2): e17019CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Wilson W, Morris W, Bronstein J. Coexistence of mutualists and exploiters on spatial landscapes. Ecological Monographs, 2003, 73(3): 397–413CrossRefGoogle Scholar
  86. 86.
    Brenner K, Arnold F H. Self-organization, layered structure, and aggregation enhance persistence of a synthetic biofilm consortium. PLoS One, 2011, 6(2): e16791CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Chuang J S, Rivoire O, Leibler S. Cooperation and Hamilton’s rule in a simple synthetic microbial system. Molecular Systems Biology, 2010, 6: 398CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Chuang J S, Rivoire O, Leibler S. Simpson’s paradox in a synthetic microbial system. Science, 2009, 323(5911): 272–275CrossRefPubMedGoogle Scholar
  89. 89.
    Gore J, Youk H, van Oudenaarden A. Snowdrift game dynamics and facultative cheating in yeast. Nature, 2009, 459(7244): 253–256CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Griffin A S, West S A, Buckling A. Cooperation and competition in pathogenic bacteria. Nature, 2004, 430(7003): 1024–1027CrossRefPubMedGoogle Scholar
  91. 91.
    West S A, Pen I, Griffin A S. Cooperation and competition between relatives. Science, 2002, 296(5565): 72–75CrossRefPubMedGoogle Scholar
  92. 92.
    Celiker H, Gore J. Competition between species can stabilize public—goods cooperation within a species. Molecular Systems Biology, 2012, 8(1): 621PubMedPubMedCentralGoogle Scholar
  93. 93.
    Bergstrom T, Blume L, Varian H. On the private provision of public goods. Journal of Public Economics, 1986, 29(1): 25–49CrossRefGoogle Scholar
  94. 94.
    Driscoll W W, Pepper J W. Theory for the evolution of diffusible external goods. Evolution, 2010, 64(9): 2682–2687CrossRefPubMedGoogle Scholar
  95. 95.
    Zhang F, Kwan A, Xu A, Süel G M. A synthetic quorum sensing system reveals a potential private benefit for public good production in a biofilm. PLoS One, 2015, 10(7): e0132948CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.
    Waite A J, Shou W. Adaptation to a new environment allows cooperators to purge cheaters stochastically. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(47): 19079–19086CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Chen A, Sanchez A, Dai L, Gore J. Dynamics of a producerfreeloader ecosystem on the brink of collapse. Nature Communications, 2014, 5: 3713PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Venturi V, Bertani I, Kerényi Á, Netotea S, Pongor S. Coswarming and local collapse: Quorum sensing conveys resilience to bacterial communities by localizing cheater mutants in Pseudomonas aeruginosa. PLoS One, 2010, 5(4): e9998CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Bihary D, Tóth M, Kerényi Á, Venturi V, Pongor S. Modeling bacterial quorum sensing in open and closed environments: potential discrepancies between agar plate and culture flask experiments. Journal of Molecular Modeling, 2014, 20(7): 1–6CrossRefGoogle Scholar
  100. 100.
    Pepper J W. The evolution of bacterial social life: From the ivory tower to the front lines of public health. Evolution, Medicine, and Public Health, 2014, 2014(1): 65–68CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Ross-Gillespie A, Weigert M, Brown S P, Kümmerli R. Galliummediated siderophore quenching as an evolutionarily robust antibacterial treatment. Evolution, Medicine, and Public Health, 2014, 2014(1): 18–29CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Hood M I, Skaar E P. Nutritional immunity: Transition metals at the pathogen-host interface. Nature Reviews. Microbiology, 2012, 10(8): 525–537CrossRefPubMedGoogle Scholar
  103. 103.
    Skaar E P. The battle for iron between bacterial pathogens and their vertebrate hosts. PLoS Pathogens, 2010, 6(8): e1000949CrossRefPubMedPubMedCentralGoogle Scholar
  104. 104.
    Köhler T, Buckling A, van Delden C. Cooperation and virulence of clinical Pseudomonas aeruginosa populations. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(15): 6339–6344CrossRefPubMedPubMedCentralGoogle Scholar
  105. 105.
    Merlo L M F, Pepper J W, Reid B J, Maley C C. Cancer as an evolutionary and ecological process. Nature Reviews. Cancer, 2006, 6(12): 924–935CrossRefPubMedGoogle Scholar
  106. 106.
    Pepper J W. Defeating pathogen drug resistance: Guidance from evolutionary theory. Evolution, 2008, 62(12): 3185–3191CrossRefPubMedGoogle Scholar
  107. 107.
    Boehm T, Folkman J, Browder T, O’Reilly M S. Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature, 1997, 390(6658): 404–407CrossRefPubMedGoogle Scholar
  108. 108.
    Folkman J. Angiogenesis. Annual Review of Medicine, 2006, 57: 1–18CrossRefPubMedGoogle Scholar
  109. 109.
    Duan F, March J C. Engineered bacterial communication prevents Vibrio cholerae virulence in an infant mouse model. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(25): 11260–11264CrossRefPubMedPubMedCentralGoogle Scholar
  110. 110.
    Saeidi N, Wong C K, Lo T M, Nguyen H X, Ling H, Leong S S J, Poh C L, Chang MW. Engineering microbes to sense and eradicate Pseudomonas aeruginosa, a human pathogen. Molecular Systems Biology, 2011, 7(1): 521CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Michael D. Dressler
    • 1
    • 2
  • Corey J. Clark
    • 1
    • 2
  • Chelsea A. Thachettu
    • 2
  • Yasmine Zakaria
    • 2
  • Omar Tonsi Eldakar
    • 2
  • Robert P. Smith
    • 2
  1. 1.Department of Marine Biology and Environmental Science, Halmos College of Natural Sciences and OceanographyNova Southeastern UniversityFort LauderdaleUSA
  2. 2.Department of Biological Sciences, Halmos College of Natural Sciences and OceanographyNova Southeastern UniversityFort LauderdaleUSA

Personalised recommendations