Frontiers of Chemical Science and Engineering

, Volume 10, Issue 4, pp 480–489 | Cite as

Solubility and diffusivity of CO2 in n-butanol + N235 system and absorption mechanism of CO2 in a coupled reaction-extraction process

Research Article

Abstract

The absorption of CO2 in insoluble organic amine is crucial for understanding the mechanism of coupled reaction-extraction-crystallization process between aqueous chloride and CO2. In this study, the solubility and diffusivity of CO2 in n-butanol + N235 system were measured and reported. The absorption of CO2 in the system is a physical absorption behavior and the solubility of CO2 decreases with the increase of the mass fraction of N235. The diffusivity of CO2 increases firstly and then decreases with the increase in the mass fraction of N235. Moreover, the absorption mechanism of CO2 in the coupled reaction-extraction-crystallization process was investigated and identified by experiments. The results indicated that in the coupled reaction-extraction-crystallization process, CO2 is absorbed by the aqueous phase rather than by the organic phase and further transferred into the aqueous phase.

Keywords

carbon dioxide N235 solubility diffusivity coupled process 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pai R A, Doherty M F, Malone M F. Design of reactive extractionsystems for bioproduct recovery. AIChE Journal, 2002, 48(3): 514–526CrossRefGoogle Scholar
  2. 2.
    Van Halsema F E D, Wielen L A M, Luyben K C A M. The modeling of carbon dioxide-aided extraction of carboxylic acids from aqueous solutions. Industrial & Engineering Chemistry Research, 1998, 37(3): 748–758CrossRefGoogle Scholar
  3. 3.
    Kuzmanovic B, Kuipers N J M, Haan André B, Kwant G. Reactive extraction of carboxylic acids from apolar hydrocarbons using aqueous solutions of sodium hydrogen carbonate with backrecovery using carbon dioxide under pressure. Separation and Purification Technology, 2005, 47(1): 58–72CrossRefGoogle Scholar
  4. 4.
    Bi P Y, Dong H R, Guo Q Z. Separation and purification of penicillin G from fermentation broth by solvent sublation. Separation and Purification Technology, 2009, 65(2): 228–231CrossRefGoogle Scholar
  5. 5.
    Jaquet A, Quan L, Marison I W, Stockar U V. Factors influencing the potential use of Aliquat 336 for the in situ extraction of carboxylic acids from cultures of pseudomonas putida. Journal of Biotechnology, 1999, 68(2-3): 185–196CrossRefGoogle Scholar
  6. 6.
    Glöckler R, Roduit J P. Industrial bioprocesses for the production of substituted aromatic heterocycles. Chimia, 1996, 50(9): 413–415Google Scholar
  7. 7.
    Miller R W, Cockrem MC M, Pablo J J D, Lightfoot E N. Extraction of lactic acid from a calcium lactate solution using amine-containing solvents and carbon dioxide gas. Industrial & Engineering Chemistry Research, 1996, 35(4): 1156–1162CrossRefGoogle Scholar
  8. 8.
    Zhang J S, Zhang R, Geerlings H, Bi J C. A novel indirect wollastonite carbonation route for CO2 sequestration. Chemical Engineering & Technology, 2010, 33(7): 1177–1183CrossRefGoogle Scholar
  9. 9.
    Vinoba M, Bhagiyalakshmi M, Grace A N, Chu D H, Yoon Y. CO2 absorption and sequestration as various polymorphs of CaCO3 using sterically hindered amine. Langmuir, 2013, 29(50): 15655–15663CrossRefGoogle Scholar
  10. 10.
    Wang W L, Hu M Q, Zheng Y L, Wang P, Ma C Y. CO2 fixation in Ca2+-/Mg2+-rich aqueous solutions through enhanced carbonate precipitation. Industrial & Engineering Chemistry Research, 2011, 50(13): 8333–8339CrossRefGoogle Scholar
  11. 11.
    Liu X, Wang W L, Wang M, Wang P. Experimental study of CO2 mineralization in Ca2+-rich aqueous solutions using tributylamine as an enhancing medium. Energy & Fuels, 2014, 28(3): 2047–2053CrossRefGoogle Scholar
  12. 12.
    Wang W L, Wang M, Liu X, Wang P, Xi Z Q. Experiment and optimization for simultaneous carbonation of Ca2+ and Mg2+ in a two-phase system of insoluble diisobutylamine and aqueous solution. Scientific Reports, 2015, 5: 1–9CrossRefGoogle Scholar
  13. 13.
    Li Y Z, Song X, Chen G, Sun Z, Xu Y, Yu J. Song X F, Chen G L, Sun Z, Xu Y X, Yu J G. Preparation of calcium carbonate and hydrogen chloride from distiller waste based on reactive extractioncrystallization process. Chemical Engineering Journal, 2015, 278: 55–61CrossRefGoogle Scholar
  14. 14.
    Li Y Z, Song X F, Sun S Y, Xu Y X, Yu J G. Extraction equilibrium of hydrochloric acid at low concentrations between water and N235 in isoamyl alcohol solution: Experiments and simulation. Journal of Chemical & Engineering Data, 2015, 60(10): 3000–3008CrossRefGoogle Scholar
  15. 15.
    Zhou Z Y, Liang F, Qin W, Fei W Y. Coupled reaction and solvent extraction process to form Li2CO3: Mechanism and product characterization. AIChE Journal, 2014, 60(1): 282–288CrossRefGoogle Scholar
  16. 16.
    Li Y Z, Song X F, Chen G L, Yu J G. Extraction of hydrogen chloride by a coupled reaction-solvent extraction process. Front Chem Sci Eng, 2015, 9(4): 479–487CrossRefGoogle Scholar
  17. 17.
    Li J, Ye Y M, Chen L F, Qi Z W. Solubilities of CO2 in poly (ethylene glycols) from (303. 15 to 333. 15) K. Journal of Chemical & Engineering Data, 2012, 57(2): 610–616CrossRefGoogle Scholar
  18. 18.
    Li J, Chen L F, Ye Y M, Qi Z W. Solubility of CO2 in the mixed solvent system of alkanolamines and poly(ethylene glycol) 200. Journal of Chemical & Engineering Data, 2014, 59(6): 1781–1787CrossRefGoogle Scholar
  19. 19.
    Guo C, Chen S Y, Zhang Y C, Wang G B. Solubility of CO2 in nonaqueous absorption system of 2-(2-Aminoethylamine)ethanol + benzyl alcohol. Journal of Chemical & Engineering Data, 2014, 59(6): 1796–1801CrossRefGoogle Scholar
  20. 20.
    Kim Y E, Choi J H, Nam S C, Yoon Y I. CO2 absorption capacity using aqueous potassium carbonate with 2-methylpiperazine and piperazine. Journal of Industrial and Engineering Chemistry, 2012, 18(1): 105–110CrossRefGoogle Scholar
  21. 21.
    Gui X, Tang Z G, Fei W Y. CO2 capture with physical solvent dimethyl carbonate at high pressures. Journal of Chemical & Engineering Data, 2010, 55(9): 3736–3741CrossRefGoogle Scholar
  22. 22.
    Ko J J, Li M H. Kinetics of absorption of carbon dioxide into solutions of N-methyldiethanolamine + water. Chemical Engineering Science, 2000, 55(19): 4139–4147CrossRefGoogle Scholar
  23. 23.
    Wang Y, Gao H, Yan W. Excess molar enthalpies of diethyl malonate + (1-butanol, 2-methyl-1-propanol, 1-pentanol, n-heptane, and ethyl acetate) at T = (288. 2, 298. 2, 313. 2, 328. 2, 338. 2, and 348. 2 K) and p = 101. 3 kPa. Fluid Phase Equilibria, 2010, 291(1): 8–12CrossRefGoogle Scholar
  24. 24.
    Estrada-Baltazar A, Iglesias-Silva G A, Caballero-Cerón C. Volumetric and transport properties of binary mixtures of n-octane + ethanol, + 1-Propanol, + 1-butanol, and + 1-pentanol from (293. 15 to 323. 15) K at atmospheric pressure. Journal of Chemical & Engineering Data, 2013, 58(12): 3351–3363CrossRefGoogle Scholar
  25. 25.
    Mokhtarani B, Sharifi A, Mortaheb H R, Mirzaei M, Mafi M, Sadeghian F. Density and viscosity of 1-butyl-3-methylimidazolium nitrate with ethanol, 1-propanol, or 1-butanol at several temperatures. Journal of Chemical Thermodynamics, 2009, 41(12): 1432–1438CrossRefGoogle Scholar
  26. 26.
    Gui X, Tang Z G, Fei W Y. Solubility of CO2 in alcohols, glycols, ethers, and ketones at high pressures from (288. 15 to 318. 15) K. Journal of Chemical & Engineering Data, 2011, 56(5): 2420–2429CrossRefGoogle Scholar
  27. 27.
    Anthony J L, Maginn E J, Brennecke J F. Solubilities and thermodynamic properties of gases in the ionic liquid 1-n-butyl-3-methylimidazolium hexafluorophosphate. Journal of Physical Chemistry B, 2002, 106(29): 7315–7320CrossRefGoogle Scholar
  28. 28.
    Abuarabi M K A, Tamimi A, Aljarrah A M. Solubility and diffusivity of CO2 in triethanolamine solutions. Journal of Chemical & Engineering Data, 2001, 46(5): 1125–1129CrossRefGoogle Scholar
  29. 29.
    Takeuchi H, Fujine M, Sato T, Onda K. Simultaneous determination of diffusion coefficient and solubility of gas in liquid by a diaphragm cell. Journal of Chemical Engineering of Japan, 1975, 8(3): 252–253CrossRefGoogle Scholar
  30. 30.
    Sada E, Kumazawa H, Han Z Q, Matsuyama H. Chemical kinetics of the reaction of carbon dioxide with ethanolamines in nonaqueous solvents. AIChE Journal, 1985, 31(8): 1297–1303CrossRefGoogle Scholar
  31. 31.
    Alvarez F C, Midoux N, Laurent A, Charpentier J C. Chemical kinetics of the reaction of carbon dioxide with amines in pseudo mnth order conditions in aqueous and organic solutions. Chemical Engineering Science, 1980, 35(8): 1717–1723CrossRefGoogle Scholar
  32. 32.
    Won Y S, Chung D K, Mills A F. Density, viscosity, surface tension, and carbon dioxide solubility and diffusivity of methanol, ethanol, aqueous propanol, and aqueous ethylene glycol at 25 °C. Journal of Chemical & Engineering Data, 1981, 26(2): 140–141CrossRefGoogle Scholar
  33. 33.
    Dalmolin I, Skovroinski E, Biasi A, Corazza M L, Dariva C, Oliveira J V. Solubility of carbon dioxide in binary and ternary mixtures with ethanol and water. Fluid Phase Equilibria, 2006, 245(2): 193–200CrossRefGoogle Scholar
  34. 34.
    Versteeg G F, Van S W. Solubility and diffusivity of acid gases (carbon dioxide, nitrous oxide) in aqueous alkanolamine solutions. Journal of Chemical & Engineering Data, 1988, 33(1): 29–34CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.National Engineering Research Center for Integrated Utilization of Salt Lake ResourceEast China University of Science and TechnologyShanghaiChina

Personalised recommendations