Advertisement

Frontiers of Chemical Science and Engineering

, Volume 10, Issue 4, pp 542–551 | Cite as

Streptomyces ghanaensis VITHM1 mediated green synthesis of silver nanoparticles: Mechanism and biological applications

  • Mani Abirami
  • Krishnan Kannabiran
Research Article

Abstract

We present the microbial green synthesis of silver nanoparticles (NPs) by Streptomyces ghanaensis VITHM1 strain (MTCC No. 12465). The secondary metabolites in the cell free supernatant of this bacterium when incubated with 1 mmol/L AgNO3, mediated the biological synthesis of AgNPs. The synthesized AgNPs were characterized by UV-visible spectrum, X-ray diffraction (XRD), atomic force microscope, scanning electron microscopy equipped with energy dispersive spectroscopy, transmission electron microscopy, FT-IR spectroscopy, dynamic light scattering and zeta potential. They were highly stable and, spherical in shape with the average size of 30‒50 nm. The secondary metabolites involved in the formation of AgNPs were identified gas chromatographymass spectrography. The 3D structure of the unit cell of the synthesized AgNPs was determined using XRD data base. The synthesized AgNPs exhibited significant antibacterial activity against tested bacterial pathogens, and did not show haemolysis on human red blood cells. This green synthesis could provide a new platform to explore and use AgNPs as antibacterial therapeutic agents.

Keywords

Streptomyces ghanaensis VITHM1 nanoparticles 3D structure antibacterial activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kavitha A, Prabhakar P, Vijayalakshmi M, Venkateswarlu Y. Purification and biological evaluation of the metabolites produced by Streptomyces sp. TK-VL_333. Research in Microbiology, 2010, 161(5): 335–345CrossRefGoogle Scholar
  2. 2.
    Rai M K, Deshmukh S D, Ingle A P, Gade A K. Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria. Applied Microbiology, 2012, 112(5): 841–852CrossRefGoogle Scholar
  3. 3.
    Sadowski Z, Maliszewska I H, Grochowalska B, Polowczyk I, Kozlecki T. Synthesis of silver nanoparticles using microorganisms. Materials Science Poland, 2008, 26: 419–424Google Scholar
  4. 4.
    Rajeshkumar S, Malarkodi C, Paulkumar K, Vanaja M, Gnanajobitha G, Annadurai G. Intracellular and extracellular biosynthesis of silver nanoparticles by using marine bacteria Vibrio alginolyticus. Journal of Nanoscience and Nanotechnology, 2013, 3: 21–25Google Scholar
  5. 5.
    Iravani S, Korbekandi H, Mirmohammadi S V. Zolfaghari B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Research in Pharmaceutical Sciences, 2014, 9: 385–406Google Scholar
  6. 6.
    Kumar R, Roopan S M, Prabhakarn A, Khanna V G, Chakroborty S. Agricultural waste Annona squamosa peel extract: Biosynthesis of silver nanoparticles. Spectrochimica Acta. Part A: Molecular Spectroscopy, 2012, 90: 173–176CrossRefGoogle Scholar
  7. 7.
    Khan A K, Rashid R, Murtaza G, Zahra A. Gold nanoparticles: Synthesis and applications in drug delivery. Tropical Journal of Pharmaceutical Research, 2014, 13(7): 1169–1177CrossRefGoogle Scholar
  8. 8.
    Tiwari P M, Vig K, Dennis V K, Singh S R. Functionalized gold nanoparticles and their biomedical applications. Journal of Nanomaterials, 2011, 1(1): 31–63CrossRefGoogle Scholar
  9. 9.
    Landage S M, Wasif A I. Nanosilver: An effective antimicrobial agent for finishing of textiles. International Journal of Engineering Sciences & Engineering Technologies, 2012, 4: 66–78Google Scholar
  10. 10.
    Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian S R, Muniyandi J, Hariharan N, Eom S H. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids and Surfaces. B, Biointerfaces, 2009, 74(1): 328–335CrossRefGoogle Scholar
  11. 11.
    Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian S R, Muniyandi J, Hariharan N, Eom S H. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids and Surfaces. B, Biointerfaces, 2009, 74(1): 328–335CrossRefGoogle Scholar
  12. 12.
    Kalishwaralal K, Deepak V, Ramkumarpandian S, Nellaiah H, Sangiliyandi G. Extracellular biosynthesis of silver nanoparticles by the culture supernatant of Bacillus licheniformis. Materials Letters, 2008, 62(29): 4411–4413CrossRefGoogle Scholar
  13. 13.
    Choi J, Reipa V, Hitchins V M, Goering P L, Malinauskast R A. Physicochemical characterization and in vitro hemolysis evaluation of silver nanoparticles. Journal of Toxicological Sciences, 2011, 123(1): 133–143CrossRefGoogle Scholar
  14. 14.
    Abirami M, khanna V G, Kannabiran K. Antibacterial activity of marine Streptomyces sp. isolated from Andaman & Nicobar Islands, India. International Journal of Pharma and Bio Sciences, 2013, 4: 280–286Google Scholar
  15. 15.
    Thenmozhi M, Kannabiran K, Kumar R, Gopiesh K V. Antifungal activity of Streptomyces sp. VITSTK7 and its synthesized Ag2O/Ag nanoparticles against medically important Aspergillus pathogens. Journal of Medical Mycology, 2013, 23(2): 97–103CrossRefGoogle Scholar
  16. 16.
    Bauer A W, Kirby W M, Sherris J C, Turck M. Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology, 1966, 45: 493–496CrossRefGoogle Scholar
  17. 17.
    Sanjenbam P, Gopal J V, Kannabiran K. Anticandidal activity of silver nanoparticles synthesized using Streptomyces sp. VITPK1. Journal de Mycologie Mdicale, 2014, 24(3): 211–219CrossRefGoogle Scholar
  18. 18.
    Ruparelia J P, Chatterjee A K, Duttagupta S P, Mukherji S. Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomaterialia, 2008, 4(3): 707–716CrossRefGoogle Scholar
  19. 19.
    Raveendran P, Fu J, Wallen S L. Completely green synthesis and stabilization of metal nanoparticles. Journal of the American Chemical Society, 2003, 125(46): 13940–13941CrossRefGoogle Scholar
  20. 20.
    Sadhasivam S, Shanmugam P, Yun K. Biosynthesis of silver nanoparticles by Streptomyceshy groscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids and Surfaces. B, Biointerfaces, 2010, 81(1): 358–362CrossRefGoogle Scholar
  21. 21.
    Philip D. Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectrochimca Acta Part A: Molecular and Biomolecular spectroscopy, 2009, 73: 374–380CrossRefGoogle Scholar
  22. 22.
    Azam A, Ahmed A S, Oves M, Khan M S, Habib S S, Memic A. Antimicrobial activity of metal oxide nanoparticles against Grampositive and Gram-negative bacteria: A comparative study. International Journal of Nanomedicine, 2012, 7: 6003–6009CrossRefGoogle Scholar
  23. 23.
    Kumar S, Balachandran C, Duraipandian V, Ramasamy D, Ignacimuth I. AL-Dhabi N A. Extracellular biosynthesis of silver nanoparticle using Streptomyces sp. 09 PBT 005 and its antibacterial and cytotoxic properties. Applied Nanoscience, 2015, 5(2): 169–180CrossRefGoogle Scholar
  24. 24.
    Das R K, Borthakur B B, Bora U. Green synthesis of gold nanoparticles using ethanolic leaf extract of Centella asiatica. Materials Letters, 2010, 64(13): 1445–1447CrossRefGoogle Scholar
  25. 25.
    Kalishwaralal K, Deepak V, Pandian S R, Kottaisamy M, Barathmanikanth S, Kartikeyan B, Gurunathan S. Biosynthesis of silver and gold nanoparticles using Brevibacterium casei. Colloids and Surfaces. B, Biointerfaces, 2010, 77(2): 257–262CrossRefGoogle Scholar
  26. 26.
    Klueh U, Wagner V, Kelly S, Johnson A, Bryers J D. Efficacy of silver-coated fabric to prevent bacterial colonization and subsequent device-based biofilm formation. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 2000, 53(6): 621–631CrossRefGoogle Scholar
  27. 27.
    Xiu Z M, Zhang Q B, Puppala H L, Colvin V L, Alvarez P J. Negligible particle-specific antibacterial activity of silver nanoparticles. Nano Letters, 2012, 12(8): 4271–4275CrossRefGoogle Scholar
  28. 28.
    Lu Z, Rong K, Li J, Yang H, Chen R. Size-dependent antibacterial activities of silver nanoparticles against oral anaerobic pathogenic bacteria. Journal of Materials Science. Materials in Medicine, 2013, 24(6): 1465–1471CrossRefGoogle Scholar
  29. 29.
    Golinska P, Wypij M, Rathod D, Tickar S, Dahm H, Rai M. Synthesis of silver nanoparticles from two acidophilic strains of Pilimelia columellifera subsp. pallida and their antibacterial activities. Journal of Basic Microbiology, 2015, 56(5): 541–556CrossRefGoogle Scholar
  30. 30.
    Railean-Plugaru V, Pomastowski P, Wypij M, Szultka-M Lynska M, Rafinska K, Golinska P, Dahm H, Buszewski B. Study of silver nanoparticles synthesized by acidophilic strain of actinobacteria isolated from the Picea sitchensis forest soil. Journal of Applied Microbiology, 2016, 120(5): 1250–1263CrossRefGoogle Scholar
  31. 31.
    Kamel Z, Saleh M, El Namoury N. Biosynthesis, characterization, and antimicrobial activity of silver nanoparticles from actinomycetes. Research Journal of Pharmaceutical. Biological and Chemical Sciences, 2016, 1: 119–127Google Scholar
  32. 32.
    Oves M, Khan M S, Zaidi A, Ahmed A S, Ahmed F, Ahmad E, Sherwani A, Owais M, Azam A. Antibacterial and cytotoxic efficacy of extracellular silver nanoparticles biofabricated from chromium reducing novel OS4 strain of Stenotrophomonas maltophilia. PLoS One, 2013, 8(3): e59140CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Biomolecules and Genetic DivisionSchool of Biosciences and Technology, VIT UniversityTamil NaduIndia

Personalised recommendations