Skip to main content
Log in

Two-dimensional self-assembly of melem and melemium cations at pH-controlled aqueous solution–Au(111) interfaces under electrochemical control

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Two-dimensional self-assembly of melem at pH-controlled aqueous solution-Au(111) interfaces has been investigated by electrochemical scanning tunneling microscopy. In the solutions with pH>pK b1 of melem, two ordered self-assembled structures (honeycomb and close-packed structures) and one disordered fibrillar structure were observed as a function of the surface coverage of melem controlled by the electrode potential. In contrast, in the acidic solution with pH<pK b1 of melem, only the self-assembled honeycomb network was observed in a relatively wide potential range probably due to the presence of monoprotonated melem cations. Dots attributed to counteranions were frequently observed in the pores of the honeycomb network. The lack of close-packed and fibrillar structures at low pH (<pK b1) is attributed to ionic repulsion of melemium cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mali K S, De Feyter S. Principles of molecular assemblies leading to molecular nanostructures. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 2013, 371(2000): 20120304

    Google Scholar 

  2. Elemans J A A W, Lei S, De Feyter S. Molecular and supramolecular networks on surfaces: From two-dimensional crystal engineering to reactivity. Angewandte Chemie International Edition, 2009, 48(40): 7298–7332

    Article  CAS  Google Scholar 

  3. Kudernac T, Lei S, Elemans J A A W, De Feyter S. Twodimensional supramolecular self-assembly: Nanoporous networks on surfaces. Chemical Society Reviews, 2009, 38(2): 402–421

    Article  CAS  Google Scholar 

  4. Kunitake M, Higuchi R, Tanoue R, Uemura S. Self-assembled π-conjugated macromolecular architectures—a soft solution process based on Schiff base coupling. Current Opinion in Colloid & Interface Science, 2014, 19(2): 140–154

    Article  CAS  Google Scholar 

  5. Zhuang X, Mai Y, Wu D, Zhang F, Feng X. Two-dimensional soft nanomaterials: A fascinating world of materials. Advanced Materials, 2015, 27(3): 403–427

    Article  CAS  Google Scholar 

  6. Schwarzer A, Saplinova T, Kroke E. Tri-s-triazines (s-heptazines)—from a “mystery molecule” to industrially relevant carbon nitride materials. Coordination Chemistry Reviews, 2013, 257(13–14): 2032–2062

    Article  CAS  Google Scholar 

  7. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 2009, 8(1): 76–80

    Article  CAS  Google Scholar 

  8. Franklin E C. The ammono carbonic acids. Journal of the American Chemical Society, 1922, 44(3): 486–509

    Article  CAS  Google Scholar 

  9. Finkel’shtein A I, Spiridonova N V. Chemical properties and molecular structure of derivatives of sym-heptazine [1,3,4,6,7,9,9b-heptaaza-phenalene, tri-1,3,5-triazine]. Russian Chemical Reviews, 1964, 33(7): 400–405

    Article  Google Scholar 

  10. Takimoto M, Yokoyama T, Sawada M, Yamashita M. Isolation of melam and melem from fused products of dicyandiamide and melamine and some of their properties. Kogyo Kagaku Zasshi, 1963, 66(6): 793–797

    Article  CAS  Google Scholar 

  11. Komatsu T. The first synthesis and characterization of cyameluric high polymers. Macromolecular Chemistry and Physics, 2001, 202 (1): 19–25

    Article  CAS  Google Scholar 

  12. Jürgens B, Irran E, Senker J, Kroll P, Müller H, Schnick W. Melem (2,5,8-triamino-tri-s-triazine), an important intermediate during condensation of melamine rings to graphitic carbon nitride: Synthesis, structure determination by X-ray powder diffractometry, solid-state NMR, and theoretical studies. Journal of the American Chemical Society, 2003, 125(34): 10288–10300

    Article  Google Scholar 

  13. Miller D R, Swenson D C, Gillan E G. Synthesis and structure of 2,5,8-triazido-s-heptazine: An energetic and luminescent precursor to nitrogen-rich carbon nitrides. Journal of the American Chemical Society, 2004, 126(17): 5372–5373

    Article  CAS  Google Scholar 

  14. Schwarzer A, Böhme U, Kroke E. Use of melem as a nucleophilic reagent to form the triphthalimide C6N7(phthal)3—new targets and prospects. Chemistry, 2012, 18(38): 12052–12058

    Article  CAS  Google Scholar 

  15. Uemura S, Aono M, Komatsu T, Kunitake M. Two-dimensional self-assembled structures of melamine and melem at the aqueous solution-Au(111) interface. Langmuir, 2011, 27(4): 1336–1340

    Article  CAS  Google Scholar 

  16. Eichhorn J, Schlögl S, Lotsch B V, Schnick W, Heckl W M, Lackinger M. Self-assembly of melem on Ag(111)—emergence of porous structures based on amino-heptazine hydrogen bonds. CrystEngComm, 13(11): 5559–5565

  17. Uemura S, Aono M, Sakata K, Komatsu T, Kunitake M. Thermodynamic control of 2D bicomponent porous networks of melamine and melem: Diverse hydrogen-bonded networks. Journal of Physical Chemistry C, 2013, 117(47): 24815–24821

    Article  CAS  Google Scholar 

  18. Yoshimoto S, Itaya K. Adsorption and assembly of ions and organic molecules at electrochemical interfaces: Nanoscale aspects. Annual Review of Analytical Chemistry, 2013, 6(1): 213–235

    Article  CAS  Google Scholar 

  19. Uemura S, Tanoue R, Yilmaz N, Ohira A, Kunitake M. Molecular dynamics in two-dimensional supramolecular systems observed by STM. Materials, 2010, 3(8): 4252–4276

    Article  CAS  Google Scholar 

  20. Phan T H, Breuer S, Hahn U, Pham D T, Torres T, Wandelt K. Unusual demetalation and ordered adsorption of a pyridineappended zinc phthalocyanine at metal-electrolyte interfaces studied by in situ scanning tunneling microscopy and X-ray photoelectron spectroscopy. Journal of Physical Chemistry C, 2014, 118(1): 457–467

    Article  CAS  Google Scholar 

  21. Ye T, He Y, Borguet E. Adsorption and electrochemical activity: An in situ electrochemical scanning tunneling microscopy study of electrode reactions and potential-induced adsorption of porphyrins. Journal of Physical Chemistry B, 2006, 110(12): 6141–6147

    Article  CAS  Google Scholar 

  22. Dai P X, Chen T, Wang D, Wan L J. Potential dependent adsorption geometry of 2,5-dihydroxybenzoic acid on a Au(111) Surface: An in situ electrochemical scanning tunneling microscopy study. Journal of Physical Chemistry C, 2012, 116(10): 6208–6214

    Article  CAS  Google Scholar 

  23. Yuan Q H, Xing Y, Borguet E. An STM study of the pH dependent redox activity of a two-dimensional hydrogen bonding porphyrin network at an electrochemical interface. Journal of the American Chemical Society, 2010, 132(14): 5054–5060

    Article  CAS  Google Scholar 

  24. Sattler A, Schnick W. Preparation and structure of melemium melem perchlorate HC6N7(NH2)3ClO4·C6N7(NH2)3. Zeitschrift fur Anorganische und Allgemeine Chemie, 2008, 634(3): 457–460

    Article  CAS  Google Scholar 

  25. Sattler A, Seyfarth L, Senker J, Schnick W. Syntheses, crystal structures and spectroscopic properties of the melem adduct C6N7(NH2)3·H3PO4 and the melemium salts (H2C6N7(NH2)3) SO4·2H2O and (HC6N7(NH2)3)ClO4·H2O. Zeitschrift fur Anorganische und Allgemeine Chemie, 2005, 631(13–14): 2545–2554

    Article  CAS  Google Scholar 

  26. In our investigation, melem is dissolved into 0.1 mol·L-1 perchloric acid solution (pH = 1.3) at least around 6 × 10-5 mol·L-1

  27. Li Z, Han B, Wan L J, Wandlowski T. Supramolecular nanostructures of 1,3,5-benzene-tricarboxylic acid at electrified Au(111)/0.05 mol·L-1 H2SO4 interfaces: An in situ scanning tunneling microscopy study. Langmuir, 2005, 21(15): 6915–6928

    Article  CAS  Google Scholar 

  28. Zhang HM, Xie Z X, Long L S, Zhong H P, Zhao W, Mao BW, Xu X, Zheng L S. One-step preparation of large-scale self-assembled monolayers of cyanuric acid and melamine supramolecular species on Au(111) surfaces. Journal of Physical Chemistry C, 2008, 112 (11): 4209–4218

    Article  CAS  Google Scholar 

  29. Ivasenko O, Macleod J M, Chernichenko K Y, Balenkova E S, Shpanchenko R V, Nenajdenko V G, Rosei F, Perepichka D F. Supramolecular assembly of heterocirculenes in 2D and 3D. Chemical Communications, 2009, 10: 1192–1194

    Article  Google Scholar 

  30. Griessl S J H, Lackinger M, Jamitzky F, Markert T, Hietschold M, Heckl W. Room-temperature scanning tunneling microscopy manipulation of single C60 molecules at the liquid-solid interface: Playing nanosoccer. Journal of Physical Chemistry B, 2004, 108 (31): 11556–11560

    Article  CAS  Google Scholar 

  31. Cardenas M L, Lipton-Duffin J, Rosei F. Transformations of molecular frameworks by host-guest response: Novel routes toward two-dimensional self-assembly at the solid-liquid interface. Japanese Journal of Applied Physics, 2011, 50(8S3): 08LA02

  32. Ma X, Yang Y, Deng K, Zeng Q, Zhao K, Wang C, Bai C. Molecular miscibility characteristics of self-assembled 2D molecular architectures. Journal of Materials Chemistry, 2008, 18(18): 2074–2081

    Article  CAS  Google Scholar 

  33. Wang H, Kaiser T E, Uemura S, Würthner F. Perylene bisimide J-aggregates with absorption maxima in the NIR. Chemical Communications, 2008, 10: 1181–1183

    Article  Google Scholar 

  34. Samorí P, Severin N, Simpson C D, Müllen K, Rabe J P. Epitaxial composite layers of electron donors and acceptors from very large polycyclic aromatic hydrocarbons. Journal of the American Chemical Society, 2002, 124(32): 9454–9457

    Article  Google Scholar 

  35. Uemura S, Sakata M, Taniguchi I, Hirayama C, Kunitake M. In situ observation of coronene epitaxial adlayers on Au(111) surfaces prepared by the transfer of Langmuir films. Thin Solid Films, 2002, 409(2): 206–210

    Article  CAS  Google Scholar 

  36. Elemans J A A W, Lensen M C, Gerritsen J W, van Kempen H, Speller S, Nolte R J M, Rowan A E. Scanning probe studies of porphyrin assemblies and their supramolecular manipulation at a solid-liquid interface. Advanced Materials, 2003, 15(24): 2070–2073

    Article  CAS  Google Scholar 

  37. Sek S, Xu S, Chen M, Szymanski G, Lipkowski J. Molecular resolution imaging of an antibiotic peptide in a lipid matrix. Journal of the American Chemical Society, 2008, 130(17): 5736–5743

    Article  CAS  Google Scholar 

  38. Gutzler R, Sirtl T, Dienstmaier J F, Mahata K, Heckl W M, Schmittel M, Lackinger M. Reversible phase transitions in self-assembled monolayers at the liquid-solid interface: Temperature-controlled opening and closing of nanopores. Journal of the American Chemical Society, 2010, 132(14): 5084–5090

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shinobu Uemura or Masashi Kunitake.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uemura, S., Sakata, K., Aono, M. et al. Two-dimensional self-assembly of melem and melemium cations at pH-controlled aqueous solution–Au(111) interfaces under electrochemical control. Front. Chem. Sci. Eng. 10, 294–300 (2016). https://doi.org/10.1007/s11705-016-1564-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-016-1564-4

Keywords

Navigation