Frontiers of Chemical Science and Engineering

, Volume 9, Issue 4, pp 532–540 | Cite as

Orderly decorated nanostructural photoelectrodes with uniform spherical TiO2 particles for dye-sensitized solar cells

  • A. M. BakhshayeshEmail author
  • S. S. Azadfar
Research Article


This study presents a novel nanostructural electrode made of 20-nm-diameter nanoparticles, which orderly decorated with 2-µm TiO2 particles, deposited by a new gel process. The decorated electrode (DE) is better than the non-decorated electrode (NE) in both light scattering and light harvesting, as confirmed by diffuse reflectance spectroscopy. X-ray diffraction reveals that both electrodes have a mixture of anatase and rutile phases. The dye-sensitized solar cell based on the decorated electrode shows the highest power conversion efficiency of 7.80% as a result of less recombination demonstrated by electrochemical impedance spectroscopy. From internal power conversion efficiency measurement, the external quantum efficiency of DE cell at 530 nm is 89%, which is higher than that of NE cell (77%).


dye-sensitized solar cell uniform particles TiO2 gel process light harvesting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737–740CrossRefGoogle Scholar
  2. 2.
    Mohammadi M R, Bakhshayesh A M, Sadri F, Masroor M. Improved efficiency of dye-sensitized solar cells by design of a proper double layer photoanode electrodes composed of Cr-doped TiO2 transparent and light scattering layers. Journal of Sol-Gel Science and Technology, 2013, 67(1): 77087CrossRefGoogle Scholar
  3. 3.
    Wang Y Z, Chen E L, Lai H M, Lu B, Hu Z L, Qin X M, Shi W Z, Du G P. Enhanced light scattering and photovoltaic performance for dye-sensitized solar cells by embedding submicron SiO2/TiO2 core/shell particles in photoanode. Ceramics International, 2013, 39(5): 5407–5413CrossRefGoogle Scholar
  4. 4.
    Xu J L, Li K, Shi W Y, Peng T Y. Rice-like brookite titania as an efficient scattering layer for nanosized anatase titania film-based dye-sensitized solar cells. Journal of Power Sources, 2014, 260: 233–242CrossRefGoogle Scholar
  5. 5.
    Bakhshayesh A M, Mohammadi M R, Dadar H, Fray D J. Improved efficiency of dye-sensitized solar cells aided by corn-like TiO2 nanowires as the light scattering layer. Electrochimica Acta, 2013, 90: 302–308CrossRefGoogle Scholar
  6. 6.
    Chen D H, Huang F Z, Cheng Y B, Caruso R A, Chen D H, Huang F Z, Cheng Y B, Caruso R A. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: A superior candidate for high-performance dye-sensitized solar cells. Advanced Materials, 2009, 21(21): 2206–2210CrossRefGoogle Scholar
  7. 7.
    Bakhshayesh A M, Mohammadi M R, Fray D J. Controlling electron transport rate and recombination process of TiO2 dyesensitized solar cells by design of double-layer films with different arrangement modes. Electrochimica Acta, 2012, 78: 384–391CrossRefGoogle Scholar
  8. 8.
    Bakhshayesh A M, Mohammadi M R. The improvement of electron transport rate of TiO2 dye-sensitized solar cells using mixed nanostructures with different phase compositions. Ceramics International, 2013, 39(7): 7343–7353CrossRefGoogle Scholar
  9. 9.
    Deepak T D, Anjusree G S, Thomas S, Arun T A, Nair S V, Sreekumaran Nair A. A review on materials for light scattering in dye-sensitized solar cells. RSC Advances, 2014, 4(34): 17615–17638CrossRefGoogle Scholar
  10. 10.
    Usami A. Theoretical study of application of multiple scattering of light to a dye sensitized nanocrystalline photoelectrichemical cell. Chemical Physics Letters, 1997, 277(1–3): 105–108CrossRefGoogle Scholar
  11. 11.
    Wang Z S, Kawauchi H, Kashima T, Arakawa H. Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coordination Chemistry Reviews, 2004, 248(13–14): 1381–1389CrossRefGoogle Scholar
  12. 12.
    Ferber J, Luther J. Computer simulations of light scattering and absorption in dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 1998, 54(1–4): 265–275CrossRefGoogle Scholar
  13. 13.
    Kang S H, Kim J Y, Kim H S, Koh H D, Lee J S, Sung Y E. Influence of light scattering particles in the TiO2 photoelectrode for solid-state dye-sensitized solar cell. Journal of Photochemistry and Photobiology A Chemistry, 2008, 200(2–3): 294–300CrossRefGoogle Scholar
  14. 14.
    Liang J, Zhang G, Xia H, Sun W. Room-temperature fabrication of dual-functional hierarchical TiO2 spheres for dye-sensitized solar cells. RSC Advances, 2014, 4(25): 12649–12652CrossRefGoogle Scholar
  15. 15.
    Zhang Q, Chou T P, Russo B, Jenekhe S A, Cao G. Aggregation of ZnO nanocrystallites for high conversion efficiency in dyesensitized solar cells. Angewandte Chemie International Edition, 2008, 47(13): 2402–2406CrossRefGoogle Scholar
  16. 16.
    Bakhshayesh A M, Mohammadi M R. Development of nanostructured porous TiO2 thick film with uniform spherical particles by a new polymeric gel process for dye-sensitized solar cell applications. Electrochimica Acta, 2013, 89: 90–97CrossRefGoogle Scholar
  17. 17.
    Ito S, Liska P, Pechy P, Bach U, Nazeeruddin M K, Kay A, Zekeeruddin S M, Grätzel M. Control of dark current in photoelectrochemical (TiO2/I-–I3-) and dye-sensitized solar cells. Chemical Communications, 2005, 34(34): 4351–4353CrossRefGoogle Scholar
  18. 18.
    Jeong N C, Farha O K, Hupp J T. A convenient Route to high area, nanoparticulate TiO2 photoelectrodes suitable for high-efficiency energy conversion in dye-sensitized solar cells. Langmuir, 2011, 27(5): 1996–1999CrossRefGoogle Scholar
  19. 19.
    Spurr R A, Myers H. Quantitative analysis of anatase-rutile mixtures with anX-ray diffractometer. Analytical Chemistry, 1957, 29(5): 760–762CrossRefGoogle Scholar
  20. 20.
    Cullity B D, Stock S R. Elements of X-ray diffraction. Lawrence: Prentice Hall, 2001, 96–102Google Scholar
  21. 21.
    Yang L, Lin Y, Jia J, Xiao X, Li X, Zhou X. Light harvesting enhancement for dye-sensitized solar cells by novel anode containing cauliflower-like TiO2 spheres. Journal of Power Sources, 2008, 182(1): 370–376CrossRefGoogle Scholar
  22. 22.
    Feigenbrugel C, Loew S L, Calvé P, Mirabel J. Near-UV molar absorptivities ofacetone, alachlor, metolachlor, diazinon and dichlorvos in aqueous solution. Journal of Photochemistry and Photobiology A Chemistry, 2005, 174(1): 76–81CrossRefGoogle Scholar
  23. 23.
    Longo C, Freitas J, De Paoli M A. Performance and stability of TiO2 dye solar cells assembled with flexible electrodes and a polymer electrolyte. Journal of Photochemistry and Photobiology A Chemistry, 2003, 159(1): 33–39CrossRefGoogle Scholar
  24. 24.
    Lin Y P, Lin S Y, Lee Y C, Chen Y W. High surface area electrospun prickle-like hierarchical anatase TiO2 nanofibers for dye-sensitized solar cell photoanodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(34): 9875–9884CrossRefGoogle Scholar
  25. 25.
    Schlichthorl G, Huang S Y, Sprague J, Frank A J. Band-edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: A study by intensity modulated photovoltage spectroscopy. Journal of Physical Chemistry B, 1997, 101(41): 8141–8155CrossRefGoogle Scholar
  26. 26.
    Zhang L W, Fu H B, Zhu Y F. Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon. Advanced Functional Materials, 2008, 18(15): 2180–2189CrossRefGoogle Scholar
  27. 27.
    Martinson A A B F, Goes M S, Fabregat-Santiago F, Bisquert J, Pellin M J, Hupp J T. Electron transport in dye-sensitized solar cells based on ZnO nanotubes: Evidence for highly efficient charge collection and exceptionally rapid dynamics. Journal of Physical Chemistry A, 2009, 113(16): 4015–4021CrossRefGoogle Scholar
  28. 28.
    Fabregat-Santiago F, Bisquert J, Palomares E, Otero L, Kuang D, Zakeeruddin S M, Gratzel M. Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. Journal of Physical Chemistry C, 2007, 111(17): 6550–6560CrossRefGoogle Scholar
  29. 29.
    Tsai C H, Chang C W, Tsai Y T, Lu C Y, Chen M C, Huang T W, Wu C C. Novel three-layer TiO2 nanoparticle stacking architecture for efficient dye-sensitized solar cells. Organic Electronics, 2013, 14(11): 2866–2874CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Research and DevelopmentSUN Nanotechnologists CompanyTehranIran

Personalised recommendations