Advertisement

Frontiers of Chemical Science and Engineering

, Volume 9, Issue 4, pp 532–540 | Cite as

Orderly decorated nanostructural photoelectrodes with uniform spherical TiO2 particles for dye-sensitized solar cells

  • A. M. BakhshayeshEmail author
  • S. S. Azadfar
Research Article

Abstract

This study presents a novel nanostructural electrode made of 20-nm-diameter nanoparticles, which orderly decorated with 2-µm TiO2 particles, deposited by a new gel process. The decorated electrode (DE) is better than the non-decorated electrode (NE) in both light scattering and light harvesting, as confirmed by diffuse reflectance spectroscopy. X-ray diffraction reveals that both electrodes have a mixture of anatase and rutile phases. The dye-sensitized solar cell based on the decorated electrode shows the highest power conversion efficiency of 7.80% as a result of less recombination demonstrated by electrochemical impedance spectroscopy. From internal power conversion efficiency measurement, the external quantum efficiency of DE cell at 530 nm is 89%, which is higher than that of NE cell (77%).

Keywords

dye-sensitized solar cell uniform particles TiO2 gel process light harvesting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737–740CrossRefGoogle Scholar
  2. 2.
    Mohammadi M R, Bakhshayesh A M, Sadri F, Masroor M. Improved efficiency of dye-sensitized solar cells by design of a proper double layer photoanode electrodes composed of Cr-doped TiO2 transparent and light scattering layers. Journal of Sol-Gel Science and Technology, 2013, 67(1): 77087CrossRefGoogle Scholar
  3. 3.
    Wang Y Z, Chen E L, Lai H M, Lu B, Hu Z L, Qin X M, Shi W Z, Du G P. Enhanced light scattering and photovoltaic performance for dye-sensitized solar cells by embedding submicron SiO2/TiO2 core/shell particles in photoanode. Ceramics International, 2013, 39(5): 5407–5413CrossRefGoogle Scholar
  4. 4.
    Xu J L, Li K, Shi W Y, Peng T Y. Rice-like brookite titania as an efficient scattering layer for nanosized anatase titania film-based dye-sensitized solar cells. Journal of Power Sources, 2014, 260: 233–242CrossRefGoogle Scholar
  5. 5.
    Bakhshayesh A M, Mohammadi M R, Dadar H, Fray D J. Improved efficiency of dye-sensitized solar cells aided by corn-like TiO2 nanowires as the light scattering layer. Electrochimica Acta, 2013, 90: 302–308CrossRefGoogle Scholar
  6. 6.
    Chen D H, Huang F Z, Cheng Y B, Caruso R A, Chen D H, Huang F Z, Cheng Y B, Caruso R A. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: A superior candidate for high-performance dye-sensitized solar cells. Advanced Materials, 2009, 21(21): 2206–2210CrossRefGoogle Scholar
  7. 7.
    Bakhshayesh A M, Mohammadi M R, Fray D J. Controlling electron transport rate and recombination process of TiO2 dyesensitized solar cells by design of double-layer films with different arrangement modes. Electrochimica Acta, 2012, 78: 384–391CrossRefGoogle Scholar
  8. 8.
    Bakhshayesh A M, Mohammadi M R. The improvement of electron transport rate of TiO2 dye-sensitized solar cells using mixed nanostructures with different phase compositions. Ceramics International, 2013, 39(7): 7343–7353CrossRefGoogle Scholar
  9. 9.
    Deepak T D, Anjusree G S, Thomas S, Arun T A, Nair S V, Sreekumaran Nair A. A review on materials for light scattering in dye-sensitized solar cells. RSC Advances, 2014, 4(34): 17615–17638CrossRefGoogle Scholar
  10. 10.
    Usami A. Theoretical study of application of multiple scattering of light to a dye sensitized nanocrystalline photoelectrichemical cell. Chemical Physics Letters, 1997, 277(1–3): 105–108CrossRefGoogle Scholar
  11. 11.
    Wang Z S, Kawauchi H, Kashima T, Arakawa H. Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coordination Chemistry Reviews, 2004, 248(13–14): 1381–1389CrossRefGoogle Scholar
  12. 12.
    Ferber J, Luther J. Computer simulations of light scattering and absorption in dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 1998, 54(1–4): 265–275CrossRefGoogle Scholar
  13. 13.
    Kang S H, Kim J Y, Kim H S, Koh H D, Lee J S, Sung Y E. Influence of light scattering particles in the TiO2 photoelectrode for solid-state dye-sensitized solar cell. Journal of Photochemistry and Photobiology A Chemistry, 2008, 200(2–3): 294–300CrossRefGoogle Scholar
  14. 14.
    Liang J, Zhang G, Xia H, Sun W. Room-temperature fabrication of dual-functional hierarchical TiO2 spheres for dye-sensitized solar cells. RSC Advances, 2014, 4(25): 12649–12652CrossRefGoogle Scholar
  15. 15.
    Zhang Q, Chou T P, Russo B, Jenekhe S A, Cao G. Aggregation of ZnO nanocrystallites for high conversion efficiency in dyesensitized solar cells. Angewandte Chemie International Edition, 2008, 47(13): 2402–2406CrossRefGoogle Scholar
  16. 16.
    Bakhshayesh A M, Mohammadi M R. Development of nanostructured porous TiO2 thick film with uniform spherical particles by a new polymeric gel process for dye-sensitized solar cell applications. Electrochimica Acta, 2013, 89: 90–97CrossRefGoogle Scholar
  17. 17.
    Ito S, Liska P, Pechy P, Bach U, Nazeeruddin M K, Kay A, Zekeeruddin S M, Grätzel M. Control of dark current in photoelectrochemical (TiO2/I-–I3-) and dye-sensitized solar cells. Chemical Communications, 2005, 34(34): 4351–4353CrossRefGoogle Scholar
  18. 18.
    Jeong N C, Farha O K, Hupp J T. A convenient Route to high area, nanoparticulate TiO2 photoelectrodes suitable for high-efficiency energy conversion in dye-sensitized solar cells. Langmuir, 2011, 27(5): 1996–1999CrossRefGoogle Scholar
  19. 19.
    Spurr R A, Myers H. Quantitative analysis of anatase-rutile mixtures with anX-ray diffractometer. Analytical Chemistry, 1957, 29(5): 760–762CrossRefGoogle Scholar
  20. 20.
    Cullity B D, Stock S R. Elements of X-ray diffraction. Lawrence: Prentice Hall, 2001, 96–102Google Scholar
  21. 21.
    Yang L, Lin Y, Jia J, Xiao X, Li X, Zhou X. Light harvesting enhancement for dye-sensitized solar cells by novel anode containing cauliflower-like TiO2 spheres. Journal of Power Sources, 2008, 182(1): 370–376CrossRefGoogle Scholar
  22. 22.
    Feigenbrugel C, Loew S L, Calvé P, Mirabel J. Near-UV molar absorptivities ofacetone, alachlor, metolachlor, diazinon and dichlorvos in aqueous solution. Journal of Photochemistry and Photobiology A Chemistry, 2005, 174(1): 76–81CrossRefGoogle Scholar
  23. 23.
    Longo C, Freitas J, De Paoli M A. Performance and stability of TiO2 dye solar cells assembled with flexible electrodes and a polymer electrolyte. Journal of Photochemistry and Photobiology A Chemistry, 2003, 159(1): 33–39CrossRefGoogle Scholar
  24. 24.
    Lin Y P, Lin S Y, Lee Y C, Chen Y W. High surface area electrospun prickle-like hierarchical anatase TiO2 nanofibers for dye-sensitized solar cell photoanodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(34): 9875–9884CrossRefGoogle Scholar
  25. 25.
    Schlichthorl G, Huang S Y, Sprague J, Frank A J. Band-edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: A study by intensity modulated photovoltage spectroscopy. Journal of Physical Chemistry B, 1997, 101(41): 8141–8155CrossRefGoogle Scholar
  26. 26.
    Zhang L W, Fu H B, Zhu Y F. Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon. Advanced Functional Materials, 2008, 18(15): 2180–2189CrossRefGoogle Scholar
  27. 27.
    Martinson A A B F, Goes M S, Fabregat-Santiago F, Bisquert J, Pellin M J, Hupp J T. Electron transport in dye-sensitized solar cells based on ZnO nanotubes: Evidence for highly efficient charge collection and exceptionally rapid dynamics. Journal of Physical Chemistry A, 2009, 113(16): 4015–4021CrossRefGoogle Scholar
  28. 28.
    Fabregat-Santiago F, Bisquert J, Palomares E, Otero L, Kuang D, Zakeeruddin S M, Gratzel M. Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. Journal of Physical Chemistry C, 2007, 111(17): 6550–6560CrossRefGoogle Scholar
  29. 29.
    Tsai C H, Chang C W, Tsai Y T, Lu C Y, Chen M C, Huang T W, Wu C C. Novel three-layer TiO2 nanoparticle stacking architecture for efficient dye-sensitized solar cells. Organic Electronics, 2013, 14(11): 2866–2874CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Research and DevelopmentSUN Nanotechnologists CompanyTehranIran

Personalised recommendations