Skip to main content
Log in

HDS of dibenzothiophenes and hydrogenation of tetralin over a SiO2 supported Ni-Mo-S catalyst

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

A one-step synthesized Ni-Mo-S catalyst supported on SiO2 was prepared and used for hydrodesulphurization (HDS) of dibenzothiophene (DBT), and 4,6-dimethyl-dibenzothiophene (4,6-DMDBT), and for hydrogenation of tetralin. The catalyst showed relatively high HDS activity with complete conversion of DBT and 4,6-DMDBT at temperature of 280 °C and a constant pressure of 435 psi. The HDS conversions of DBTand 4,6-DMDBT increased with increasing temperature and pressure, and decreasing liquid hourly space velocity (LHSV). The HDS of DBT proceeded mostly through the direct desulphurization (DDS) pathway whereas that of 4,6-DMDBT occurred mainly through the hydrogenationdesulphurization (HYD) pathway. Although the catalyst showed up to 24% hydrogenation/dehydrogenation conversion of tetralin, it had low conversion and selectivity for ring opening and contraction due to the competitive adsorption of DBTand 4,6-DMDBT and insufficient acidic sites on the catalyst surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Song C. An overview of new approaches to deep desulphurization for ultra-clean gasoline, diesel fuel and jet fuel. Catalysis Today. 2003, 86: 211–263

    Article  CAS  Google Scholar 

  2. Breysse M, Djega-Mariadassou G, Pessayre S, Geantet C, Vrinat M, Pérot G, Lemaire M. Deep desulphurization: Reactions, catalysts and technological challenges. Catalysis Today. 2003, 84: 129–138

    Article  CAS  Google Scholar 

  3. Saih Y, Segawa K. Tailoring of alumina surfaces as supports for NiMo sulfide catalysts in the ultra deep hydrodesulphurization of gas oil: Case study of TiO2-coated alumina prepared by chemical vapor deposition technique. Catalysis Today. 2003, 86: 61–72

    Article  CAS  Google Scholar 

  4. Laurenti D, Phung-Ngoc B, Roukoss C, Devers E, Marchand K, Massin L, Lemaitre L, Legens C, Quoineaud A A, Vrinat M. Intrinsic potential of alumina-supported CoMo catalysts in HDS: Comparison between γc, γT, and δ-alumina. Journal of Catalysis. 2013, 297: 165–175

    Article  CAS  Google Scholar 

  5. Klimova T, Vara P M, Lee I P. Development of new NiMo/γ-alumina catalysts doped with noble metals for deep HDS. Catalysis Today. 2010, 150: 171–178

    Article  CAS  Google Scholar 

  6. Trejo F, Rana M, Ancheyta J. CoMo/MgO-Al2O3 supported catalysts: An alternative approach to prepare HDS catalysts. Catalysis Today. 2008, 130: 327–336

    Article  CAS  Google Scholar 

  7. Li H, Li M, Chu Y, Liu F, Nie H. Essential role of citric acid in preparation of efficient NiW/Al2O3 HDS catalysts. Applied Catalysis A, General. 2011, 403: 75–82

    Article  CAS  Google Scholar 

  8. Thomazeau C, Geantet C, Lacroix M, Danot M, Harlé V, Raybaud P. Predictive approach for the design of improved HDT catalysts: γ-Alumina supported (Ni, Co) promoted Mo1–x WxS2 active phases. Applied Catalysis A, General. 2007, 322: 92–97

    Article  CAS  Google Scholar 

  9. Pérez-Martínez D J, Gaigneaux E M, Giraldo S A. Improving the selectivity to HDS in the HDT of synthetic FCC naphtha using sodium doped amorphous aluminosilicates as support of CoMo catalysts. Applied Catalysis A, General. 2012, 421–422: 48–57

    Article  Google Scholar 

  10. Alvarez A, Escobar J, Toledo J A, Pérez V, Cortés M A, Pérez M, Rivera E. HDS of straight-run gas oil at various nitrogen contents: Comparison between different reaction systems. Fuel. 2007, 86: 1240–1246

    Article  CAS  Google Scholar 

  11. Wei Q, Zhou Y, Wen S, Xu C. Preparation and properties of nickel preimpregnated CYCTS supports for hydrotreating coker gas oil. Catalysis Today. 2010, 149: 76–81

    Article  CAS  Google Scholar 

  12. Wan G, Duan A, Zhang Y, Zhao Z, Jiang G, Zhang D, Gao Z. Zeolite beta synthesized with acid-treated metakaolin and its application in diesel hydrodesulphurization. Catalysis Today. 2010, 149: 69–75

    Article  CAS  Google Scholar 

  13. Kallinikos L E, Jess A, Papayannakos N G. Kinetic study and H2S effect on refractory DBTs desulphurization in a heavy gasoil. Journal of Catalysis. 2010, 269: 169–178

    Article  CAS  Google Scholar 

  14. Torres-Mancera P, Ramírez J, Cuevas R, Gutiérrez-Alejandre A, Murrieta F, Luna R. Hydrodesulphurization of 4,6-DMDBT on NiMo and CoMo catalysts supported on B2O3-Al2O3. Catalysis Today. 2005, 107–108: 551–558

    Article  Google Scholar 

  15. Oyama S, Lee Y. The active site of nickel phosphide catalysts for the hydrodesulphurization of 4,6-DMDBT. Journal of Catalysis. 2008, 258: 393–400

    Article  CAS  Google Scholar 

  16. Sánchez-Minero F, Ramírez J, Gutiérrez-Alejandre A, Fernández-Vargas C, Torres-Mancera P, Cuevas-Garcia R. Analysis of the HDS of 4,6-DMDBT in the presence of naphthalene and carbazole over NiMo/Al2O3-SiO2(x) catalysts. Catalysis Today. 2008, 133–135: 267–276

    Article  Google Scholar 

  17. Soni K K, Boahene P E, Rambabu N, Dalai A K, Adjaye J. Hydrotreating of coker light gas oil on SBA-15 supported nickel phosphide catalysts. Catalysis Today. 2013, 207: 119–126

    Article  CAS  Google Scholar 

  18. Bai J, Li X, Wang A, Prins R, Wang Y. Hydrodesulphurization of dibenzothiophene and its hydrogenated intermediates over bulk MoP. Journal of Catalysis. 2012, 287: 161–169

    Article  CAS  Google Scholar 

  19. Sigurdson S, Dalai A K, Adjaye J. Hydrotreating of light gas oil using carbon nanotube supported NiMoS catalysts: kinetic modelling. Canadian Journal of Chemical Engineering. 2011, 89: 562–575

    Article  CAS  Google Scholar 

  20. Valencia D, Peña L, García-Cruz I. Reaction mechanism of hydrogenation and direct desulphurization routes of dibenzothiophene-like compounds: A density functional theory study. International Journal of Quantum Chemistry. 2012, 112: 3599–3605

    Article  CAS  Google Scholar 

  21. Prins R, Egorova M, Röthlisberger A, Zhao Y, Sivasankar N, Kukula P. Mechanisms of hydrodesulphurization and hydrodenitrogenation. Catalysis Today. 2006, 111: 84–93

    Article  CAS  Google Scholar 

  22. Macías G, Ramírez J, Gutiérrez-Alejandre A, Cuevas R. Preparation of highly active NiMo/Al-SBA15 (x) HDS catalysts: Preservation of the support hexagonal porous arrangement. Catalysis Today. 2008, 133–135: 261–266

    Article  Google Scholar 

  23. Kostova N G, Spojakina A A, Dutková E, Baláž P. Mechanochemical approach for preparation of Mo-containing-zeolite. Journal of Physics and Chemistry of Solids. 2007, 68: 1169–1172

    Article  CAS  Google Scholar 

  24. Yang G, Pidko E A, Hensen E J M. Mechanism of Brønsted acidcatalyzed conversion of carbohydrates. Journal of Catalysis. 2012, 295: 122–132

    Article  CAS  Google Scholar 

  25. Marques J, Guillaume D, Merdrignac I, Espinat D, Brunet S. Effect of catalysts acidity on residues hydrotreatment. Applied Catalysis B: Environmental. 2011, 101: 727–737

    Article  CAS  Google Scholar 

  26. Leyva C, Rana M S, Trejo F, Ancheyta J. NiMo supported acidic catalysts for heavy oil hydroprocessing. Catalysis Today. 2009, 141: 168–175

    Article  CAS  Google Scholar 

  27. Ding L, Zheng Y, Zhang Z, Ring Z, Chen J. HDS, HDN, HDA, and hydrocracking of model compounds over Mo-Ni catalysts with various acidities. Applied Catalysis A, General, 2007, 319: 25–37

    Article  CAS  Google Scholar 

  28. Ramírez J, Sánchez-Minero F. Support effects in the hydrotreatment of model molecules. Catalysis Today. 2008, 130: 267–271

    Article  Google Scholar 

  29. Infantes-Molina A, Moreno-León C, Pawelec B, Fierro J L G, Rodríguez-Castellón E, Jimenez-López A. Simultaneous hydrodesulphurization and hydrodenitrogenation on MoP/SiO2 catalysts: Effect of catalyst preparation method. Applied Catalysis B: Environmental. 2012, 113–114: 87–99

    Article  Google Scholar 

  30. Wu Z, Sun F, Wu W, Feng Z, Liang C, Wei Z, Li C. On the surface sites of MoP/SiO2 catalyst under sulphiding conditions: IR spectroscopy and catalytic reactivity studies. Journal of Catalysis. 2004, 222: 41–52

    Article  CAS  Google Scholar 

  31. Phillips D C, Sawhill S J, Self R, Bussell M E. Synthesis, characterization, and hydrodesulphurization properties of silicasupported molybdenum phosphide catalysts. Journal of Catalysis. 2002, 207: 266–273

    Article  CAS  Google Scholar 

  32. Clark P, Wang X, Oyama S T. Characterization of silica-supported molybdenum and tungsten phosphide hydroprocessing catalysts by 31P nuclear magnetic resonance spectroscopy. Journal of Catalysis. 2002, 207: 256–265

    Article  CAS  Google Scholar 

  33. Yao S, Song C, Nan F, Botton G A, Chen J, Fairbridge C, Hui R, Zhang J. Synthesis of hierarchical structured porous MoS2/SiO2 microspheres by ultrasonic spray pyrolysis. Canadian Journal of Chemical Engineering. 2012, 90: 330–335

    Article  CAS  Google Scholar 

  34. Nan F, Song C, Zhang J, Hui R, Chen J, Fairbridge C, Botton G A. STEM HAADF tomography of molybdenum disulfide with mesoporous structure. ChemCatChem. 2011, 3: 999–1003

    Article  CAS  Google Scholar 

  35. Liu H, Meng X, Zhao D, Li Y. The effect of sulphur compound on the hydrogenation of tetralin over a Pd-Pt/HDAY catalyst. Chemical Engineering Journal. 2008, 140: 424–431

    Article  CAS  Google Scholar 

  36. Lamure-Meille V, Schulz E, Lemaire M, Vrinat M. Effect of experimental parameters on the relative reactivity of dibenzothiophene and 4-methyldibenzothiophene. Applied Catalysis A, General. 1995, 131: 143–157

    Article  CAS  Google Scholar 

  37. Qian W, Ishihara A, Wang G, Tsuzuki T, Godo M, Kabe T. Elucidation of behavior of sulphur on sulfided Co-Mo/Al2O3 catalyst using a 35S radioisotope pulse tracer method. Journal of Catalysis. 1997, 170: 286–294

    Article  CAS  Google Scholar 

  38. Bataille F. Alkyldibenzothiophenes hydrodesulphurization-promoter effect, reactivity, and reaction mechanism. Journal of Catalysis. 2000, 191: 409–422

    Article  CAS  Google Scholar 

  39. Lee R Z, Ng F T T. Effect of water on HDS of DBT over a dispersed Mo catalyst using in situ generated hydrogen. Catalysis Today. 2006, 116: 505–511

    Article  CAS  Google Scholar 

  40. Hrabar A, Hein J, Gutiérrez O Y, Lercher J A. Selective poisoning of the direct denitrogenation route in o-propylaniline HDN by DBT on Mo and NiMo/γ-Al2O3 sulfide catalysts. Journal of Catalysis. 2011, 281: 325–338

    Article  CAS  Google Scholar 

  41. Cristol S, Paul J F, Payen E, Bougeard D, Hutschka F, Clémendot S. DBT derivatives adsorption over molybdenum sulfide catalysts: A theoretical study. Journal of Catalysis. 2004, 224: 138–147

    Article  CAS  Google Scholar 

  42. Todorova T, Prins R, Weber T. A density functional theory study of the hydrogenolysis reaction of CH3SH to CH4 on the catalytically active (100) edge of 2H-MoS2. Journal of Catalysis. 2005, 236: 190–204

    Article  CAS  Google Scholar 

  43. Wang H, Prins R. Hydrodesulphurization of dibenzothiophene and its hydrogenated intermediates over sulfided Mo/γ-Al2O3. Journal of Catalysis. 2008, 258: 153–164

    Article  CAS  Google Scholar 

  44. Santillán-Vallejo L A, Melo-Banda J A, Reyes de la Torre A I, Sandoval-Robles G, Domínguez J M, Montesinos-Castellanos A, de los Reyes-Heredia J A. Supported (NiMo,CoMo)-carbide, -nitride phases: Effect of atomic ratios and phosphorus concentration on the HDS of thiophene and dibenzothiophene. Catalysis Today. 2005, 109: 33–41

    Article  Google Scholar 

  45. Da Costa P, Manoli J M, Potvin C, Djéga-Mariadassou G. Deep HDS on doped molybdenum carbides: From probe molecules to real feedstocks. Catalysis Today. 2005, 107–108: 520–530

    Article  Google Scholar 

  46. Castillo-Villalón P, Ramirez J, Castañeda R. Relationship between the hydrodesulphurization of thiophene, dibenzothiophene, and 4,6-dimethyl dibenzothiophene and the local structure of Co in Co–Mo–S sites: Infrared study of adsorbed CO. Journal of Catalysis. 2012, 294: 54–62

    Article  Google Scholar 

  47. Kwak C, Lee J J, Bae J S, Choi K, Moon S H. Hydrodesulphurization of DBT, 4-MDBT, and 4, 6-DMDBT on fluorinated CoMoS/Al2O3 catalysts. Applied Catalysis A, General. 2000, 200: 233–242

    Article  CAS  Google Scholar 

  48. Altamirano E, de los Reyes J A, Murrieta F, Vrinat M. Hydrodesulphurization of 4,6-dimethyldibenzothiophene over Co (Ni)MoS2 catalysts supported on alumina: Effect of gallium as an additive. Catalysis Today. 2008, 133-135: 292–298

    Article  Google Scholar 

  49. Kabe T, Ishihara A, Zhang Q. Deep desulphurization of light oil. Part 2: Hydrodesulphurization of dibenzothiophene, 4-methyldibenzothiophene and 4,6-dimethyldibenzothiophene. Applied Catalysis A, General. 1993, 97: L1–L9

    Article  CAS  Google Scholar 

  50. Arribas M A, Corma A, Díaz-Cabañas M J, Martínez A. Hydrogenation and ring opening of tetralin over bifunctional catalysts based on the new ITQ-21 zeolite. Applied Catalysis A, General. 2004, 273: 277–286

    Article  CAS  Google Scholar 

  51. Corma A. Decalin and tetralin as probe molecules for cracking and hydrotreating the light cycle oil. Journal of Catalysis. 2001, 200: 34–44

    Article  CAS  Google Scholar 

  52. Gutiérrez O Y, Klimova T. Effect of the support on the high activity of the (Ni)Mo/ZrO2-SBA-15 catalyst in the simultaneous hydrodesulphurization of DBT and 4,6-DMDBT. Journal of Catalysis. 2011, 281: 50–62

    Article  Google Scholar 

  53. Santikunaporn M, Herrera J, Jongpatiwut S, Resasco D, Alvarez W, Sughrue E. Ring opening of decalin and tetralin on HY and Pt/HY zeolite catalysts. Journal of Catalysis. 2004, 228: 100–113

    Article  CAS  Google Scholar 

  54. Ma Y, Zeng M, He J, Duan L, Wang J, Li J, Wang J. Syntheses and characterizations of cobalt doped mesoporous alumina prepared using natural rubber latex as template and its catalytic oxidation of tetralin to tetralone. Applied Catalysis A, General. 2011, 396: 123–128

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinwen Chen.

Additional information

Dedicated to the 120th Anniversary of Tianjin University

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, Q., Chen, J., Song, C. et al. HDS of dibenzothiophenes and hydrogenation of tetralin over a SiO2 supported Ni-Mo-S catalyst. Front. Chem. Sci. Eng. 9, 336–348 (2015). https://doi.org/10.1007/s11705-015-1535-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-015-1535-1

Keywords

Navigation