Size-controlled green synthesis of silver nanoparticles assisted by L-cysteine


A green and size-controlled synthesis of silver nanoparticles (Ag NPs) in aqueous solution with the assistance of L-cysteine is presented. The size of Ag NPs decreases with the increase of L-cysteine concentration, and thus can be controlled by adjusting L-cysteine concentration. TEM analysis shows that Ag NPs with an average size of 3 nm can be produced in the presence of 1.0 mmol/L L-cysteine, about one sixth of the size of Ag NPs obtained in the absence of L-cysteine (17 nm). The assynthesized silver colloidal solution is stable and can be stored at room temperature for at least two months without any precipitation. This L-cysteine assisted method is simple, feasible and efficient, and would facilitate the production and application of Ag NPs.

This is a preview of subscription content, log in to check access.


  1. 1.

    Lai G S, Wang L L, Wu J, Ju H X, Yan F. Electrochemical stripping analysis of nanogold label-induced silver deposition for ultrasensitive multiplexed detection of tumor markers. Analytica Chimica Acta, 2012, 721: 1–6

    CAS  Article  Google Scholar 

  2. 2.

    Lin Y, Chen C, Wang C, Pu F, Ren J, Qu X. Silver nanoprobe for sensitive and selective colorimetric detection of dopamine via robust Ag-catechol interaction. Chemical Communications, 2011, 47(4): 1181–1183

    CAS  Article  Google Scholar 

  3. 3.

    Yang L, Ma L, Chen G, Liu J, Tian Z Q. Ultrasensitive SERS detection of TNT by imprinting molecular recognition using a new type of stable substrate. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(42): 12683–12693

    CAS  Google Scholar 

  4. 4.

    Liu P, Zhao M. Silver nanoparticle supported on halloysite nanotubes catalyzed reduction of 4-nitrophenol (4-NP). Applied Surface Science, 2009, 255(7): 3989–3993

    CAS  Article  Google Scholar 

  5. 5.

    Yu D, Yam V W W. Controlled synthesis of monodisperse silver nanocubes in water. Journal of the American Chemical Society, 2004, 126(41): 13200–13201

    CAS  Article  Google Scholar 

  6. 6.

    Lan H, Han J, Chen H, Zhao X. Ag/PMMA hollow waveguide for solar energy transmission. Frontiers of Chemical Science and Engineering, 2011, 5(3): 303–307

    CAS  Article  Google Scholar 

  7. 7.

    Wiley B, Sun Y, Xia Y. Synthesis of silver nanostructures with controlled shapes and properties. Accounts of Chemical Research, 2007, 40(10): 1067–1076

    CAS  Article  Google Scholar 

  8. 8.

    Kida S, Ichiji M, Watanabe J, Hirasawa I. Particle size distribution and shape control of Au nanoparticles used for particle gun. Frontiers of Chemical Science and Engineering, 2013, 7(1): 60–64

    CAS  Article  Google Scholar 

  9. 9.

    Brust M, Walker M, Bethell D, Schiffrin D J, Whyman R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. Chemical Communications, 1994, (7): 801–802

    Article  Google Scholar 

  10. 10.

    Sun S, Murray C, Weller D, Folks L, Moser A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 2000, 287(5460): 1989–1992

    CAS  Article  Google Scholar 

  11. 11.

    Wu N, Fu L, SuM, Aslam M, Wong K C, Dravid V P. Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Letters, 2004, 4(2): 383–386

    CAS  Article  Google Scholar 

  12. 12.

    Harra J, Mäkitalo J, Siikanen R, Virkki M, Genty G, Kobayashi T, Kauranen M, Mäkelä JM. Size-controlled aerosol synthesis of silver nanoparticles for plasmonic materials. Journal of Nanoparticle Research, 2012, 14(6): 1–10

    Article  Google Scholar 

  13. 13.

    Pfeiffer T, Ortiz-Gonzalez J, Santbergen R, Tan H, Ott A S, Zeman M, Smets A. Plasmonic nanoparticle films for solar cell applications fabricated by size-selective aerosol deposition. Energy Procedia, 2014, 60: 3–12

    CAS  Article  Google Scholar 

  14. 14.

    Jung K, Song H J, Lee G, Ko Y, Ahn K, Choi H, Kim J Y, Ha K, Song J, Lee J K, Lee C, Choi M. Plasmonic organic solar cells employing nanobump assembly via aerosol-derived nanoparticles. ACS Nano, 2014, 8(3): 2590–2601

    CAS  Article  Google Scholar 

  15. 15.

    Wang L, Li H, Tian J, Sun X. Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites: Rapid, large-scale, wet-chemical synthesis and their application as SERS substrates. ACS Applied Materials & Interfaces, 2010, 2(11): 2987–2991

    CAS  Article  Google Scholar 

  16. 16.

    Mishra Y, Mohapatra S, Kabiraj D, Mohanta B, Lalla N, Pivin J, Avasthi D. Synthesis and characterization of Ag nanoparticles in silica matrix by atom beam sputtering. Scripta Materialia, 2007, 56 (7): 629–632

    CAS  Article  Google Scholar 

  17. 17.

    Ge J, Lei J, Zare R N. Protein-inorganic hybrid nanoflowers. Nature Nanotechnology, 2012, 7(7): 428–432

    CAS  Article  Google Scholar 

  18. 18.

    Kang L, Xu P, Chen D, Zhang B, Du Y, Han X, Li Q, Wang H L. Amino acid-assisted synthesis of hierarchical silver microspheres for single particle surface-enhanced Raman spectroscopy. Journal of Physical Chemistry C, 2013, 117(19): 10007–10012

    CAS  Article  Google Scholar 

  19. 19.

    Wei H, Wang Z, Zhang J, House S, Gao Y G, Yang L M, Robinson H, Tan L H, Xing H, Hou C J, Robertson IM, Zuo J M, Lu Y. Timedependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme. Nature Nanotechnology, 2011, 6(2): 93–97

    CAS  Article  Google Scholar 

  20. 20.

    Zhao S, Yao J, Fei X, Shao Z, Chen X. An antimicrobial film by embedding in situ synthesized silver nanoparticles in soy protein isolate. Materials Letters, 2013, 95: 142–144

    CAS  Article  Google Scholar 

  21. 21.

    Guli M, Lambert E M, Li M, Mann S. Template-directed synthesis of nanoplasmonic arrays by intracrystalline metalization of crosslinked lysozyme crystals. Angewandte Chemie International Edition, 2010, 49(3): 520–523

    CAS  Article  Google Scholar 

  22. 22.

    Pandey S, Goswami G K, Nanda K K. Green synthesis of biopolymer-silver nanoparticle nanocomposite: An optical sensor for ammonia detection. International Journal of Biological Macromolecules, 2012, 51(4): 583–589

    CAS  Article  Google Scholar 

  23. 23.

    Saini R K, Srivastava A K, Gupta P K, Das K. pH dependent reversible aggregation of Chitosan and glycol-Chitosan stabilized silver nanoparticles. Chemical Physics Letters, 2011, 511(4–6): 326–330

    CAS  Article  Google Scholar 

  24. 24.

    Hung Y C, Hsu W T, Lin T Y, Fruk L. Photoinduced write-once read-many-times memory device based on DNA biopolymer nanocomposite. Applied Physics Letters, 2011, 99(25): 253301

    Article  Google Scholar 

  25. 25.

    Guo C, Irudayaraj J. Fluorescent Ag clusters via a protein-directed approach as a Hg(II) ion sensor. Analytical Chemistry, 2011, 83(8): 2883–2889

    CAS  Article  Google Scholar 

  26. 26.

    Slocik J M, Wright D W. Biomimetic mineralization of noble metal nanoclusters. Biomacromolecules, 2003, 4(5): 1135–1141

    CAS  Article  Google Scholar 

  27. 27.

    Zaheer Z, Malik M A, Al-Nowaiser F M, Khan Z. Preparation of silver nanoparticles using tryptophan and its formation mechanism. Colloids and Surfaces. B, Biointerfaces, 2010, 81(2): 587–592

    CAS  Article  Google Scholar 

  28. 28.

    Liu Z, Xing Z, Zu Y, Tan S, Zhao L, Zhou Z, Sun T. Synthesis and characterization of L-histidine capped silver nanoparticles. Materials Science and Engineering C, 2012, 32(4): 811–816

    CAS  Article  Google Scholar 

  29. 29.

    Tengvall P, Lestelius M, Liedberg B, Lundström I. Plasma protein and antisera interactions with L-cysteine and 3-mercaptopropionic acid monolayers on gold surfaces. Langmuir, 1992, 8(5): 1236–1238

    CAS  Article  Google Scholar 

  30. 30.

    Jiang C, Guan Z, Lim S Y, Polavarapu L, Xu Q H. Two-photon ratiometric sensing of Hg2+ by using cysteine functionalized Ag nanoparticles. Nanoscale, 2011, 3(8): 3316–3320

    CAS  Article  Google Scholar 

  31. 31.

    Perni S, Hakala V, Prokopovich P. Biogenic synthesis of antimicrobial silver nanoparticles capped with L-cysteine. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2014, 460: 219–224

    CAS  Article  Google Scholar 

  32. 32.

    Underwood S, Mulvaney P. Effect of the solution refractive index on the color of gold colloids. Langmuir, 1994, 10(10): 3427–3430

    CAS  Article  Google Scholar 

  33. 33.

    Pakhomov P M, Abramchuk S S, Khizhnyak S D, Ovchinnikov M M, Spiridonova V M. Formation of nanostructured hydrogels in L-cysteine and silver nitrate solutions. Nanotechnologies in Russia, 2010, 5(3-4): 209–213

    Google Scholar 

  34. 34.

    Babic M, Horák D, Jendelová P, Glogarová K I, Herynek V T, Trchová M, Likavcanová K N, Lesný P, Pollert E, Hájek M, Syková E. Poly(N,N-dimethylacrylamide)-coated maghemite nanoparticles for stem cell labeling. Bioconjugate Chemistry, 2009, 20(2): 283–294

    CAS  Article  Google Scholar 

  35. 35.

    Mocanu A, Cernica I, Tomoaia G, Bobos L D, Horovitz O, Tomoaia-Cotisel M. Self-assembly characteristics of gold nanoparticles in the presence of cysteine. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2009, 338(1–3): 93–101

    CAS  Article  Google Scholar 

  36. 36.

    Nidhin M, Indumathy R, Sreeram K, Nair B U. Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates. Bulletin of Materials Science, 2008, 31(1): 93–96

    CAS  Article  Google Scholar 

  37. 37.

    Honary S, Barabadi H, Gharaei-Fathabad E, Naghibi F. Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Tropical Journal of Pharmaceutical Research, 2013, 12(1): 7–11

    CAS  Google Scholar 

  38. 38.

    Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298(5601): 2176–2179

    CAS  Article  Google Scholar 

  39. 39.

    Kim Y H, Lee D K, Kang Y S. Synthesis and characterization of Ag and Ag–SiO2 nanoparticles. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2005, 257–258: 273–276

    Article  Google Scholar 

  40. 40.

    Li H, Bian Y. Selective colorimetric sensing of histidine in aqueous solutions using cysteine modified silver nanoparticles in the presence of Hg2+. Nanotechnology, 2009, 20(14): 145502

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Lin Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Zhang, L. & Sun, Y. Size-controlled green synthesis of silver nanoparticles assisted by L-cysteine. Front. Chem. Sci. Eng. 9, 494–500 (2015).

Download citation


  • nanoparticles
  • silver
  • L-cysteine
  • size distribution
  • synthesis