Frontiers of Chemical Science and Engineering

, Volume 9, Issue 4, pp 494–500 | Cite as

Size-controlled green synthesis of silver nanoparticles assisted by L-cysteine

  • Wenchao Zhang
  • Lin ZhangEmail author
  • Yan Sun
Research Article


A green and size-controlled synthesis of silver nanoparticles (Ag NPs) in aqueous solution with the assistance of L-cysteine is presented. The size of Ag NPs decreases with the increase of L-cysteine concentration, and thus can be controlled by adjusting L-cysteine concentration. TEM analysis shows that Ag NPs with an average size of 3 nm can be produced in the presence of 1.0 mmol/L L-cysteine, about one sixth of the size of Ag NPs obtained in the absence of L-cysteine (17 nm). The assynthesized silver colloidal solution is stable and can be stored at room temperature for at least two months without any precipitation. This L-cysteine assisted method is simple, feasible and efficient, and would facilitate the production and application of Ag NPs.


nanoparticles silver L-cysteine size distribution synthesis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lai G S, Wang L L, Wu J, Ju H X, Yan F. Electrochemical stripping analysis of nanogold label-induced silver deposition for ultrasensitive multiplexed detection of tumor markers. Analytica Chimica Acta, 2012, 721: 1–6CrossRefGoogle Scholar
  2. 2.
    Lin Y, Chen C, Wang C, Pu F, Ren J, Qu X. Silver nanoprobe for sensitive and selective colorimetric detection of dopamine via robust Ag-catechol interaction. Chemical Communications, 2011, 47(4): 1181–1183CrossRefGoogle Scholar
  3. 3.
    Yang L, Ma L, Chen G, Liu J, Tian Z Q. Ultrasensitive SERS detection of TNT by imprinting molecular recognition using a new type of stable substrate. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(42): 12683–12693Google Scholar
  4. 4.
    Liu P, Zhao M. Silver nanoparticle supported on halloysite nanotubes catalyzed reduction of 4-nitrophenol (4-NP). Applied Surface Science, 2009, 255(7): 3989–3993CrossRefGoogle Scholar
  5. 5.
    Yu D, Yam V W W. Controlled synthesis of monodisperse silver nanocubes in water. Journal of the American Chemical Society, 2004, 126(41): 13200–13201CrossRefGoogle Scholar
  6. 6.
    Lan H, Han J, Chen H, Zhao X. Ag/PMMA hollow waveguide for solar energy transmission. Frontiers of Chemical Science and Engineering, 2011, 5(3): 303–307CrossRefGoogle Scholar
  7. 7.
    Wiley B, Sun Y, Xia Y. Synthesis of silver nanostructures with controlled shapes and properties. Accounts of Chemical Research, 2007, 40(10): 1067–1076CrossRefGoogle Scholar
  8. 8.
    Kida S, Ichiji M, Watanabe J, Hirasawa I. Particle size distribution and shape control of Au nanoparticles used for particle gun. Frontiers of Chemical Science and Engineering, 2013, 7(1): 60–64CrossRefGoogle Scholar
  9. 9.
    Brust M, Walker M, Bethell D, Schiffrin D J, Whyman R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. Chemical Communications, 1994, (7): 801–802CrossRefGoogle Scholar
  10. 10.
    Sun S, Murray C, Weller D, Folks L, Moser A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 2000, 287(5460): 1989–1992CrossRefGoogle Scholar
  11. 11.
    Wu N, Fu L, SuM, Aslam M, Wong K C, Dravid V P. Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Letters, 2004, 4(2): 383–386CrossRefGoogle Scholar
  12. 12.
    Harra J, Mäkitalo J, Siikanen R, Virkki M, Genty G, Kobayashi T, Kauranen M, Mäkelä JM. Size-controlled aerosol synthesis of silver nanoparticles for plasmonic materials. Journal of Nanoparticle Research, 2012, 14(6): 1–10CrossRefGoogle Scholar
  13. 13.
    Pfeiffer T, Ortiz-Gonzalez J, Santbergen R, Tan H, Ott A S, Zeman M, Smets A. Plasmonic nanoparticle films for solar cell applications fabricated by size-selective aerosol deposition. Energy Procedia, 2014, 60: 3–12CrossRefGoogle Scholar
  14. 14.
    Jung K, Song H J, Lee G, Ko Y, Ahn K, Choi H, Kim J Y, Ha K, Song J, Lee J K, Lee C, Choi M. Plasmonic organic solar cells employing nanobump assembly via aerosol-derived nanoparticles. ACS Nano, 2014, 8(3): 2590–2601CrossRefGoogle Scholar
  15. 15.
    Wang L, Li H, Tian J, Sun X. Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites: Rapid, large-scale, wet-chemical synthesis and their application as SERS substrates. ACS Applied Materials & Interfaces, 2010, 2(11): 2987–2991CrossRefGoogle Scholar
  16. 16.
    Mishra Y, Mohapatra S, Kabiraj D, Mohanta B, Lalla N, Pivin J, Avasthi D. Synthesis and characterization of Ag nanoparticles in silica matrix by atom beam sputtering. Scripta Materialia, 2007, 56 (7): 629–632CrossRefGoogle Scholar
  17. 17.
    Ge J, Lei J, Zare R N. Protein-inorganic hybrid nanoflowers. Nature Nanotechnology, 2012, 7(7): 428–432CrossRefGoogle Scholar
  18. 18.
    Kang L, Xu P, Chen D, Zhang B, Du Y, Han X, Li Q, Wang H L. Amino acid-assisted synthesis of hierarchical silver microspheres for single particle surface-enhanced Raman spectroscopy. Journal of Physical Chemistry C, 2013, 117(19): 10007–10012CrossRefGoogle Scholar
  19. 19.
    Wei H, Wang Z, Zhang J, House S, Gao Y G, Yang L M, Robinson H, Tan L H, Xing H, Hou C J, Robertson IM, Zuo J M, Lu Y. Timedependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme. Nature Nanotechnology, 2011, 6(2): 93–97CrossRefGoogle Scholar
  20. 20.
    Zhao S, Yao J, Fei X, Shao Z, Chen X. An antimicrobial film by embedding in situ synthesized silver nanoparticles in soy protein isolate. Materials Letters, 2013, 95: 142–144CrossRefGoogle Scholar
  21. 21.
    Guli M, Lambert E M, Li M, Mann S. Template-directed synthesis of nanoplasmonic arrays by intracrystalline metalization of crosslinked lysozyme crystals. Angewandte Chemie International Edition, 2010, 49(3): 520–523CrossRefGoogle Scholar
  22. 22.
    Pandey S, Goswami G K, Nanda K K. Green synthesis of biopolymer-silver nanoparticle nanocomposite: An optical sensor for ammonia detection. International Journal of Biological Macromolecules, 2012, 51(4): 583–589CrossRefGoogle Scholar
  23. 23.
    Saini R K, Srivastava A K, Gupta P K, Das K. pH dependent reversible aggregation of Chitosan and glycol-Chitosan stabilized silver nanoparticles. Chemical Physics Letters, 2011, 511(4–6): 326–330CrossRefGoogle Scholar
  24. 24.
    Hung Y C, Hsu W T, Lin T Y, Fruk L. Photoinduced write-once read-many-times memory device based on DNA biopolymer nanocomposite. Applied Physics Letters, 2011, 99(25): 253301CrossRefGoogle Scholar
  25. 25.
    Guo C, Irudayaraj J. Fluorescent Ag clusters via a protein-directed approach as a Hg(II) ion sensor. Analytical Chemistry, 2011, 83(8): 2883–2889CrossRefGoogle Scholar
  26. 26.
    Slocik J M, Wright D W. Biomimetic mineralization of noble metal nanoclusters. Biomacromolecules, 2003, 4(5): 1135–1141CrossRefGoogle Scholar
  27. 27.
    Zaheer Z, Malik M A, Al-Nowaiser F M, Khan Z. Preparation of silver nanoparticles using tryptophan and its formation mechanism. Colloids and Surfaces. B, Biointerfaces, 2010, 81(2): 587–592CrossRefGoogle Scholar
  28. 28.
    Liu Z, Xing Z, Zu Y, Tan S, Zhao L, Zhou Z, Sun T. Synthesis and characterization of L-histidine capped silver nanoparticles. Materials Science and Engineering C, 2012, 32(4): 811–816CrossRefGoogle Scholar
  29. 29.
    Tengvall P, Lestelius M, Liedberg B, Lundström I. Plasma protein and antisera interactions with L-cysteine and 3-mercaptopropionic acid monolayers on gold surfaces. Langmuir, 1992, 8(5): 1236–1238CrossRefGoogle Scholar
  30. 30.
    Jiang C, Guan Z, Lim S Y, Polavarapu L, Xu Q H. Two-photon ratiometric sensing of Hg2+ by using cysteine functionalized Ag nanoparticles. Nanoscale, 2011, 3(8): 3316–3320CrossRefGoogle Scholar
  31. 31.
    Perni S, Hakala V, Prokopovich P. Biogenic synthesis of antimicrobial silver nanoparticles capped with L-cysteine. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2014, 460: 219–224CrossRefGoogle Scholar
  32. 32.
    Underwood S, Mulvaney P. Effect of the solution refractive index on the color of gold colloids. Langmuir, 1994, 10(10): 3427–3430CrossRefGoogle Scholar
  33. 33.
    Pakhomov P M, Abramchuk S S, Khizhnyak S D, Ovchinnikov M M, Spiridonova V M. Formation of nanostructured hydrogels in L-cysteine and silver nitrate solutions. Nanotechnologies in Russia, 2010, 5(3-4): 209–213Google Scholar
  34. 34.
    Babic M, Horák D, Jendelová P, Glogarová K I, Herynek V T, Trchová M, Likavcanová K N, Lesný P, Pollert E, Hájek M, Syková E. Poly(N,N-dimethylacrylamide)-coated maghemite nanoparticles for stem cell labeling. Bioconjugate Chemistry, 2009, 20(2): 283–294CrossRefGoogle Scholar
  35. 35.
    Mocanu A, Cernica I, Tomoaia G, Bobos L D, Horovitz O, Tomoaia-Cotisel M. Self-assembly characteristics of gold nanoparticles in the presence of cysteine. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2009, 338(1–3): 93–101CrossRefGoogle Scholar
  36. 36.
    Nidhin M, Indumathy R, Sreeram K, Nair B U. Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates. Bulletin of Materials Science, 2008, 31(1): 93–96CrossRefGoogle Scholar
  37. 37.
    Honary S, Barabadi H, Gharaei-Fathabad E, Naghibi F. Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Tropical Journal of Pharmaceutical Research, 2013, 12(1): 7–11Google Scholar
  38. 38.
    Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298(5601): 2176–2179CrossRefGoogle Scholar
  39. 39.
    Kim Y H, Lee D K, Kang Y S. Synthesis and characterization of Ag and Ag–SiO2 nanoparticles. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2005, 257–258: 273–276CrossRefGoogle Scholar
  40. 40.
    Li H, Bian Y. Selective colorimetric sensing of histidine in aqueous solutions using cysteine modified silver nanoparticles in the presence of Hg2+. Nanotechnology, 2009, 20(14): 145502CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina

Personalised recommendations