Skip to main content
Log in

High butanol production by regulating carbon, redox and energy in Clostridia

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Butanol is a promising biofuel with high energy intensity and can be used as gasoline substitute. It can be produced as a sustainable energy by microorganisms (such as Clostridia) from low-value biomass. However, the low productivity, yield and selectivity in butanol fermentation are still big challenges due to the lack of an efficient butanol-producing host strain. In this article, we systematically review the host cell engineering of Clostridia, focusing on (1) various strategies to rebalance metabolic flux to achieve a high butanol production by regulating the metabolism of carbon, redox or energy, (2) the challenges in pathway manipulation, and (3) the application of proteomics technology to understand the intracellular metabolism. In addition, the process engineering is also briefly described. The objective of this review is to summarize the previous research achievements in the metabolic engineering of Clostridium and provide guidance for future novel strain construction to effectively produce butanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dürre P. Fermentative butanol production. Annals of the New York Academy of Sciences. 2008, 1125(1): 353–362

    Article  Google Scholar 

  2. Caspeta L, Buijs N A A, Nielsen J. The role of biofuels in the future energy supply. Energy & Environmental Science. 2013, 6(4): 177–182

    Article  Google Scholar 

  3. Lütke-Eversloh T, Bahl H. Metabolic engineering of Clostridium acetobutylicum: Recent advances to improve butanol production. Current Opinion in Biotechnology. 2011, 22(5): 634–647

    Article  Google Scholar 

  4. Tracy B P, Jones S W, Fast A G, Indurthi D C, Papoutsakis E T. Clostridia: The importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Current Opinion in Biotechnology. 2012, 23(3): 364–381

    Article  CAS  Google Scholar 

  5. Zheng Y, Li L, Xian M, Ma Y, Yang J, Xu X, He D. Problems with the microbial production of butanol. Journal of Industrial Microbiology & Biotechnology. 2009, 36(9): 1127–1138

    Article  CAS  Google Scholar 

  6. Yu M, Zhang Y, Tang I, Yang S. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metabolic Engineering. 2011, 13(4): 373–382

    Article  CAS  Google Scholar 

  7. Harris L M, Desai R P, Welker N E, Papoutsakis E T. Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: Need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnology and Bioengineering, 2000, 67(1): 1–11

    Article  CAS  Google Scholar 

  8. Jang Y S, Lee J Y, Lee J, Park J H, Im J A, Eom M H, Lee J, Lee S H, Song H, Cho J H, Seung D Y, Lee S Y. Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. mBio. 2012, 3(5): 1–9

    Article  Google Scholar 

  9. Cooksley C M, Zhang Y, Wang H, Redl S, Winzer K, Minton N P. Targeted mutagenesis of the Clostridium acetobutylicum acetonebutanol- ethanol fermentation pathway. Metabolic Engineering. 2012, 14(6): 630–641

    Article  CAS  Google Scholar 

  10. Cai G, Jin B, Saint C, Monis P. Genetic manipulation of butyrate formation pathways in Clostridium butyricum. Journal of Biotechnology. 2011, 155(3): 269–274

    Article  CAS  Google Scholar 

  11. Lu C. Butanol production from lignocellulosic feedstocks by acetone-butanol-ethanol fermentation with integrated product recovery. Dissertation for the Doctoral Degree. Columbus: The Ohio State University. 2011, 2–25

    Google Scholar 

  12. Tummala S B, Welker N E, Papoutsakis E T. Design of antisense RNA constructs for downregulation of the acetone formation pathway of Clostridium acetobutylicum. Journal of Bacteriology. 2003, 185(6): 1923–1934

    Article  CAS  Google Scholar 

  13. Nair R V, Papoutsakis E T. Expression of plasmid-encoded aad in Clostridium acetobutylicum M5 restores vigorous butanol production. Journal of Bacteriology. 1994, 176(18): 5843–5846

    CAS  Google Scholar 

  14. Yu L, Zhao J, Xu M, Dong J, Varghese S, Yu M, Tang I, Yang S. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production: Effects of CoA transferase. Applied Microbiology and Biotechnology. 2015, published online

    Google Scholar 

  15. Ma C, Kojima K, Xu N, Mobley J, Zhou L, Yang S, Liu X M. Comparative proteomics analysis of high n-butanol producing metabolically engineered Clostridium tyrobutyricum. Journal of Biotechnology. 2015, 193: 108–119

    Article  CAS  Google Scholar 

  16. Rajagopalan G, He J, Yang K. A highly efficient NADH-dependent butanol dehydrogenase from high-butanol-producing Clostridium sp. BOH3. BioEnergy Research. 2013, 6(1): 240–251

    Article  CAS  Google Scholar 

  17. Kuit W, Minton N P, López-Contreras A M, Eggink G. Disruption of the acetate kinase (ack) gene of Clostridium acetobutylicum results in delayed acetate production. Applied Microbiology and Biotechnology. 2012, 94(3): 729–741

    Article  CAS  Google Scholar 

  18. Zhang Y, Yu M, Yang S. Effects of ptb knockout on butyric acid fermentation by Clostridium tyrobutyricum. Biotechnology Progress. 2012, 28(1): 52–59

    Article  CAS  Google Scholar 

  19. Lehmann D, Radomski N, Lütke-Eversloh T. New insights into the butyric acid metabolism of Clostridium acetobutylicum. Applied Microbiology and Biotechnology. 2012, 96(5): 1325–1339

    Article  CAS  Google Scholar 

  20. Heap J T, Cartman S T, Pennington O J, Cooksley C M, Scott J C, Blount B, Burns D A, Minton N P. Clostridia: Molecular Biology in the Post-genomic Era. Norfolk: Caister Academic Press. 2009, 179–198

    Google Scholar 

  21. Heap J T, Pennington O J, Cartman S T, Carter G P, Minton N P. The ClosTron: A universal gene knock-out system for the genus Clostridium. Journal of Microbiological Methods. 2007, 70(3): 452–464

    Article  CAS  Google Scholar 

  22. Heap J T, Kuehne S A, Ehsaan M, Cartman S T, Cooksley C M, Scott J C, Minton N P. The ClosTron: Mutagenesis in Clostridium refined and streamlined. Journal of Microbiological Methods. 2010, 80(1): 49–55

    Article  CAS  Google Scholar 

  23. Durre P, Bohringer M, Nakotte S, Schaffer S, Thormann K, Zickner B. Transcriptional regulation of solventogenesis in Clostridium acetobutylicum. Journal of Molecular Microbiology and Biotechnology. 2002, 4(3): 295–300

    CAS  Google Scholar 

  24. Lee S Y, Park J H, Jang S H, Nielsen L K, Kim J, Jung K S. Fermentative butanol production by clostridia. Biotechnology and Bioengineering. 2008, 101(2): 209–228

    Article  CAS  Google Scholar 

  25. Jang Y, Han M, Lee J, Im J A, Lee Y H, Papoutsakis E T, Bennett G, Lee S Y. Proteomic analyses of the phase transition from acidogenesis to solventogenesis using solventogenic and nonsolventogenic Clostridium acetobutylicum strains. Applied Microbiology and Biotechnology. 2014, 98(11): 5105–5115

    Article  CAS  Google Scholar 

  26. Yang S, Giannone R J, Dice L, Yang Z K, Engle N L, Tschaplinski T J, Hettich R L, Brown S D. Clostridium thermocellum ATCC27405 transcriptomic, metabolomic and proteomic profiles after ethanol stress. BMC Genomics. 2012, 13(1): 336–353

    Article  CAS  Google Scholar 

  27. Nakayama S, Kosaka T, Hirakawa H, Matsuura K, Yoshino S, Furukawa K. Metabolic engineering for solvent productivity by downregulation of the hydrogenase gene cluster hupCBA in Clostridium saccharoperbutylacetonicum strain N1-4. Applied Microbiology and Biotechnology. 2008, 78(3): 483–493

    Article  CAS  Google Scholar 

  28. Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Applied Microbiology and Biotechnology. 2008, 77(6): 1305–1316

    Article  CAS  Google Scholar 

  29. Grupe H, Gottschalk G. Physiological events in Clostridium acetobutylicum during the shift from acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction. Applied and Environmental Microbiology. 1992, 58(12): 3896–3902

    CAS  Google Scholar 

  30. Berríos-Rivera S. The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures. Metabolic Engineering. 2002, 4(3): 230–237

    Article  Google Scholar 

  31. Vemuri G N, Eiteman M A, McEwen J E, Olsson L, Nielsen J. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America. 2007, 104(7): 2402–2407

    Article  CAS  Google Scholar 

  32. Jo J H, Lee D S, Park J M. The effects of pH on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1. Bioresource Technology. 2008, 99(17): 8485–8491

    Article  CAS  Google Scholar 

  33. Jiang M, Chen J, He A, Wu H, Kong X, Liu J, Yin C, Chen W, Chen P. Enhanced acetone/butanol/ethanol production by Clostridium beijerinckii IB4 using pH control strategy. Process Biochemistry. 2014, 49(8): 1238–1244

    Article  CAS  Google Scholar 

  34. Tsai T, Lo Y, Chang J. Effect of medium composition and pH control strategies on butanol fermentation with Clostridium acetobutylicum. Energy Procedia. 2014, 61: 1691–1694

    Article  CAS  Google Scholar 

  35. Vardar-Schara G, Maeda T, Wood T K. Metabolically engineered bacteria for producing hydrogen via fermentation. Microbial Biotechnology. 2008, 1(2): 107–125

    Article  CAS  Google Scholar 

  36. Li F, Hinderberger J, Seedorf H, Zhang J, Buckel W, Thauer R K. Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. Journal of Bacteriology. 2008, 190(3): 843–850

    Article  CAS  Google Scholar 

  37. Shen C, Lan E, Dekishima Y, Baez A, Cho K M, Liao J. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Applied and Environmental Microbiology. 2011, 77(9): 2905–2915

    Article  CAS  Google Scholar 

  38. Yu R, Wang R, Bi T, Sun W, Zhou Z. Blocking the butyrateformation pathway impairs hydrogen production in Clostridium perfringens. Acta Biochimica et Biophysica Sinica. 2013, 45(5): 408–415

    Article  CAS  Google Scholar 

  39. Wang Y, San K Y, Bennett G N. Cofactor engineering for advancing chemical biotechnology. Current Opinion in Biotechnology. 2013, 24(6): 994–999

    Article  CAS  Google Scholar 

  40. Du Y, Jiang W, Yu M, Tang I, Yang S. Metabolic process engineering of Clostridium tyrobutyricum Δack-adhE2 for enhanced n-butanol production from glucose: Effects of methyl viologen on NADH availability, flux distribution, and fermentation kinetics. Biotechnology and Bioengineering. 2015, 112(4): 705–715

    Article  CAS  Google Scholar 

  41. Ujor V, Agu C V, Gopalan V, Ezeji T C. Glycerol supplementation of the growth medium enhances in situ detoxification of furfural by Clostridium beijerinckii during butanol fermentation. Applied Microbiology and Biotechnology. 2014, 98(14): 6511–6521

    Article  CAS  Google Scholar 

  42. Hüsemann M H, Papoutsakis E T. Comparison between in vivo and in vitro enzyme activities in continuous and batch fermentations of Clostridium acetobutylicum. Applied Microbiology and Biotechnology. 1989, 30(6): 585–595

    Article  Google Scholar 

  43. Wiesenborn D P, Rudolph F B, Papoutsakis E T. Thiolase from Clostridium acetobutylicum ATCC 824 and its role in the synthesis of acids and solvents. Applied and Environmental Microbiology. 1988, 54(11): 2717–2722

    CAS  Google Scholar 

  44. Lan E, Liao J. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America. 2012, 109(16): 6018–6023

    Article  CAS  Google Scholar 

  45. Ventura J S, Hu H, Jahng D. Enhanced butanol production in Clostridium acetobutylicum ATCC 824 by double overexpression of 6-phosphofructokinase and pyruvate kinase genes. Applied Microbiology and Biotechnology. 2013, 97(16): 7505–7516

    Article  CAS  Google Scholar 

  46. Bowles L K, Ellefson W L. Effects of butanol on Clostridium acetobutylicum. Applied and Environmental Microbiology. 1985, 50(5): 1165–1170

    CAS  Google Scholar 

  47. Wang J, Yang X, Chen C, Yang S. Engineering clostridia for butanol production from biorenewable resources: from cells to process integration. Current Opinion in Chemical Engineering. 2014, 6: 43–54

    Article  Google Scholar 

  48. Jo J H, Lee D S, Kim J, Park J M. Effect of initial glucose concentrations on carbon material and energy balances in hydrogenproducing Clostridium tyrobutyricum JM1. Journal of Microbiology and Biotechnology. 2009, 19(3): 291–298

    CAS  Google Scholar 

  49. Herrmann G, Jayamani E, Mai G, Buckel W. Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. Journal of Bacteriology. 2008, 190(3): 784–791

    Article  CAS  Google Scholar 

  50. Lan E, Liao J. Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresource Technology. 2013, 135: 339–349

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoguang (Margaret) Liu.

Additional information

Dedicated to the 120th Anniversary of Tianjin University

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ou, J., Ma, C., Xu, N. et al. High butanol production by regulating carbon, redox and energy in Clostridia. Front. Chem. Sci. Eng. 9, 317–323 (2015). https://doi.org/10.1007/s11705-015-1522-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-015-1522-6

Keywords

Navigation