Skip to main content
Log in

Cyanobacterial photo-driven mixotrophic metabolism and its advantages for biosynthesis

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Cyanobacterium offers a promising chassis for phototrophic production of renewable chemicals. Although engineered cyanobacteria can achieve similar product carbon yields as heterotrophic microbial hosts, their production rate and titer under photoautotrophic conditions are 10 to 100 folds lower than those in fast growing E. coli. Cyanobacterial factories face three indomitable bottlenecks. First, photosynthesis has limited ATP and NADPH generation rates. Second, CO2 fixation by ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) has poor efficiency. Third, CO2 mass transfer and light supply are deficient within large photobioreactors. On the other hand, cyanobacteria may employ organic substrates to promote phototrophic cell growth, N2 fixation, and metabolite synthesis. The photo-fermentations show enhanced photosynthesis, while CO2 loss from organic substrate degradation can be reused by the Calvin cycle. In addition, the plasticity of cyanobacterial pathways (e.g., oxidative pentose phosphate pathway and the TCA cycle) has been recently revealed to facilitate the catabolism. The use of cyanobacteria as “green E. coli” could be a promising route to develop robust photobiorefineries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tomitani A, Knoll A H, Cavanaugh C M, Ohno T. The evolutionary diversification of cyanobacteria: Molecular-phylogenetic and paleontological perspectives. Proceedings of the National Academy of Sciences of the United States of America. 2006, 103(14): 5442–5447

    Article  CAS  Google Scholar 

  2. Yu Y, You L, Liu D, Hollinshead W, Tang Y J, Zhang F. Development of Synechocystis sp. PCC 6803 as a phototrophic cell factory. Marine Drugs. 2013, 11(8): 2894–2916

    Article  Google Scholar 

  3. Nogales J, Gudmundsson S, Knight E M, Palsson B O, Thiele I. Detailing the optimality of photosynthesis in cyanobacteria through systems biology analysis. Proceedings of the National Academy of Sciences of the United States of America. 2012, 109(7): 2678–2683

    Article  CAS  Google Scholar 

  4. Liu H, Zhang H, Niedzwiedzki D M, Prado M, He G, Gross M L, Blankenship R E. Phycobilisomes supply excitations to both photosystems in a megacomplex in cyanobacteria. Science. 2013, 342(6162): 1104–1107

    Article  CAS  Google Scholar 

  5. Vermaas W F. Photosynthesis and respiration in cyanobacteria. Encyclopedia of Life Sciences, 2001: 245–251

    Google Scholar 

  6. Iwai M, Takizawa K, Tokutsu R, Okamuro A, Takahashi Y, Minagawa J. Isolation of the elusive supercomplex that drives cyclic electron flow in photosynthesis. Nature. 2010, 464(7292): 1210–1213

    Article  CAS  Google Scholar 

  7. Fork D C, Herbert S K. Electron transport and photophosphorylation by Photosystem I in vivo in plants and cyanobacteria. Photosynthesis Research. 1993, 36(3): 149–168

    Article  CAS  Google Scholar 

  8. Campbell D, Hurry V, Clarke A K, Gustafsson P, Öquist G. Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiology and Molecular Biology Reviews. 1998, 62(3): 667–683

    CAS  Google Scholar 

  9. Hasunuma T, Matsuda M, Senga Y, Aikawa S, Toyoshima M, Shimakawa G, Miyake C, Kondo A. Overexpression of flv3 improves photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803 by enhancement of alternative electron flow. Biotechnology for Biofuels. 2014, 7(1): 493

    Article  Google Scholar 

  10. Nishiyama Y, Allakhverdiev S I, Yamamoto H, Hayashi H, Murata N. Singlet oxygen inhibits the repair of photosystem II by suppressing the translation elongation of the D1 protein in Synechocystis sp. PCC 6803. Biochemistry. 2004, 43(35): 11321–11330

    Article  CAS  Google Scholar 

  11. Noguchi T. Dual role of triplet localization on the accessory chlorophyll in the Photosystem II reaction center: Photoprotection and photodamage of the D1 protein. Plant & Cell Physiology. 2002, 43(10): 1112–1116

    Article  CAS  Google Scholar 

  12. Aro E M, Virgin I, Andersson B. Photoinhibition of photosystem II. Inactivation, protein damage and turnover. Bioenergetics. 1993, 1143(2): 113–134

    Article  CAS  Google Scholar 

  13. Page L E, Liberton M, Pakrasi H B. Reduction of photoautotrophic productivity in the cyanobacterium Synechocystis sp. strain PCC 6803 by phycobilisome antenna truncation. Applied and Environmental Microbiology. 2012, 78(17): 6349–6351

    Article  CAS  Google Scholar 

  14. Joseph A, Aikawa S, Sasaki K, Matsuda F, Hasunuma T, Kondo A. Increased biomass production and glycogen accumulation in apcE gene deleted Synechocystis sp. PCC 6803. AMB Express. 2014, 4(17): 1–6

    Google Scholar 

  15. Haverkamp T H, Schouten D, Doeleman M, Wollenzien U, Huisman J, Stal L J. Colorful microdiversity of Synechococcus strains (picocyanobacteria) isolated from the Baltic Sea. ISME Journal. 2009, 3(4): 397–408

    Article  CAS  Google Scholar 

  16. Gan F, Zhang S, Rockwell N, Martin S, Lagarias J, Bryant D. Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science. 2014, 345(6202): 1312–1317

    Article  CAS  Google Scholar 

  17. Nogales J, Gudmundsson S, Thiele I. Toward systems metabolic engineering in cyanobacteria. Bioengineered. 2013, 4(3): 158–163

    Article  Google Scholar 

  18. Blankenship R E, Tiede D M, Barber J, Brudvig G W, Fleming G, Ghirardi M, GunnerMR, Junge W, Kramer D M, Melis A, Moore T A, Moser C C, Nocera D G, Nozik A J, Ort D R, Parson W W, Prince R C, Sayre R T. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science. 2011, 332(6031): 805–809

    Article  CAS  Google Scholar 

  19. Kamennaya N A, Ahn S E, Park H, Bartal R, Sasaki K A, Holman H Y, Jansson C. Installing extra bicarbonate transporters in the cyanobacterium Synechocystis sp. PCC6803. Enhances biomass production. Metabolic Engineering. 2015, 29: 76–85

    Article  CAS  Google Scholar 

  20. Ruffing A M. Improved free fatty acid production in cyanobacteria with Synechococcus sp. PCC 7002 as host. Synthetic Biology. 2014, 2(17): 1–10

    Google Scholar 

  21. Atsumi S, Higashide W, Liao J C. Direct photosynthetic recycling of carbon dioxide to isobutyraldehyde. Nature Biotechnology. 2009, 27(12): 1177–1180

    Article  CAS  Google Scholar 

  22. Oliver J W K, Atsumi S. A carbon sink pathway increases carbon productivity in cyanobacteria. Metabolic Engineering. 2015, 29: 106–112

    Article  CAS  Google Scholar 

  23. Zehr J P. Nitrogen fixation by marine cyanobacteria. Trends in Microbiology. 2011, 19(4): 162–173

    Article  CAS  Google Scholar 

  24. Eisbrenner G, Bothe H. Modes of electron transfer from molecular hydrogen in Anabaena cylindrica. Archives of Microbiology. 1979, 123(1): 37–45

    Article  CAS  Google Scholar 

  25. Osanai T, Oikawa A, Iijima H, Kuwahara A, Asayama M, Tanaka K, Ikeuchi M, Saito K, Hirai M Y. Metabolomic analysis reveals rewiring of Synechocystis sp. PCC 6803 primary metabolism by ntcA overexpression. Environmental Microbiology. 2014, 16(10): 3304–3317

    Article  CAS  Google Scholar 

  26. Dutta D, De D, Chaudhuri S, Bhattacharya S. Hydrogen production by cyanobacteria. Microbial Cell Factories. 2005, 4(1): 36

    Article  Google Scholar 

  27. Tang K H, Tang Y J, Blankenship R E. Carbon metabolic pathways in phototrophic bacteria and their broader evolutionary implications. Frontiers in Microbiology. 2011, 2: 165

    Article  CAS  Google Scholar 

  28. Wang X, Modak H V, Tabita F R. Photolithoautotrophic growth and control of CO2 fixation in Rhodobacter sphaeroides and Rhodospirillum rubrum in the absence of ribulose bisphosphate carboxylase-oxygenase. Journal of Bacteriology. 1993, 175(21): 7109–7114

    CAS  Google Scholar 

  29. Herter S, Farfsing J, Gad’On N, Rieder C, Eisenreich W, Bacher A, Fuchs G. Autotrophic CO2 fixation by Chloroflexus aurantiacus: Study of glyoxylate formation and assimilation via the 3-hydroxypropionate cycle. Journal of Bacteriology. 2001, 183(14): 4305–4316

    Article  CAS  Google Scholar 

  30. Nakajima T, Kajihata S, Yoshikawa K, Matsuda F, Furusawa C, Hirasawa T, Shimizu H. Integrated metabolic flux and omics analysis of Synechocystis sp. PCC 6803 under mixotrophic and photoheterotrophic conditions. Plant & Cell Physiology. 2014, 55(9): 1605–1612

    Article  CAS  Google Scholar 

  31. Young J D, Shastri A A, Sephanopoulos G, Morgan J A. Mapping photoautotrophic metabolism with isotopically nonstationary 13C flux analysis. Metabolic Engineering. 2011, 13(6): 656–665

    Article  CAS  Google Scholar 

  32. Yang C, Hua Q, Shimizu K. Metabolic flux analysis in Synechocystis using isotope distribution from 13C-labeled glucose. Metabolic Engineering. 2002, 4(3): 202–216

    Article  CAS  Google Scholar 

  33. You L, Berla B, He L, Pakrasi H B, Tang Y J. 13C-MFA delineates the photomixotrophic metabolism of Synechocystis sp. PCC 6803 under light- and carbon-sufficient conditions. Biotechnology Journal, 2014, 9(5): 684–692

    Article  CAS  Google Scholar 

  34. Anderson S, McIntosh L. Light-activated heterotrophic growth of the cyanobacterium Synechocystis sp. strain PCC 6803: A bluelight-requiring process. Journal of Bacteriology. 1991, 173: 2761–2767

    CAS  Google Scholar 

  35. Gao L, Shen C, Liao L, Huang X, Liu K, Wang W, Guo L, Jin W, Huang F, Xu W, Wang Y. Functional proteomic discovery of Slr0110 as a central regulator of carbohydrate metabolism in Synechocystis Species PCC6803. Molecular & Cellular Proteomics. 2014, 13(1): 204–219

    Article  CAS  Google Scholar 

  36. Zhang S, Bryant D A. The tricarboxylic acid cycle in cyanobacteria. Science. 2011, 334(6062): 1551–1553

    Article  CAS  Google Scholar 

  37. Xiong W, Brune D, Vermaas W F. The γ-aminobutyric acid shunt contributes to closing the tricarboxylic acid cycle in Synechocystis sp. PCC 6803. Molecular Microbiology. 2014, 93(4): 786–796

    Article  CAS  Google Scholar 

  38. Yan R, Zhu D, Zhang Z, Zeng Q, Chu J. Carbon metabolism and energy conversion of Synechococcus sp. PCC 7942 under mixotrophic conditions: Comparison with photoautotrophic condition. Journal of Applied Phycology. 2012, 24(4): 657–668

    Article  CAS  Google Scholar 

  39. You L, He L, Tang Y J. The photoheterotrophic fluxome in Synechocystis sp. PCC 6803 and its implications for cyanobacterial bioenergetics. Journal of Bacteriology. 2015, 197(5): 943–950

    Article  Google Scholar 

  40. Tang K H, Blankenship R E. Photosynthetic electron transport. In: Encyclopedia of Biophysics. Berlin: Springer-Verlag. 2013, 1868–1873

    Chapter  Google Scholar 

  41. Monshupanee T, Incharoensakdi A. Enhanced accumulation of glycogen, lipids and polyhydroxybutyrate under optimal nutrients and light intensities in the cyanobacterium Synechocystis sp. PCC 6803. Journal of Applied Microbiology. 2014, 116(4): 830–838

    Article  CAS  Google Scholar 

  42. Aikawa S, Nishida A, Ho S H, Chang J S, Hasunuma T, Kondo A. Glycogen production for biofuels by the euryhaline cyanobacteria Synechococcus sp. strain PCC 7002 from an oceanic environment. Biotechnology for Biofuels. 2014, 7(1): 88

    Article  Google Scholar 

  43. Stockel J, Welsh E A, Liberton M, Kunnvakkam R, Aurora R, Pakrasi H B. Global transcriptomic analysis of Cyanothece 51142 reveals robust diurnal oscillation of central metabolic processes. Proceedings of the National Academy of Sciences of the United States of America. 2008, 105(16): 6156–6161

    Article  CAS  Google Scholar 

  44. Li X, Shen C R, Liao J C. Isobutanol production as an alternative metabolic sink to rescue the growth deficiency of the glycogen mutant of Synechococcus elongatus PCC 7942. Photosynthesis Research. 2014, 120(3): 301–310

    Article  CAS  Google Scholar 

  45. van der Woude A D, Angermayr S A, Veetil V P, Osnato A, Hellingwerf K J. Carbon sink removal: Increased photosynthetic production of lactic acid by Synechocystis sp. PCC 6803 in a glycogen storage mutant. Journal of Biotechnology. 2014, 184: 100–102

    Article  Google Scholar 

  46. Yu J, Liberton M, Cliften P F, Head R D, Jacobs J M, Smith R D, Koppenaal D W, Brand J J, Pakrasi H B. Synechococcus elongatus UTEX 2973, a fast growing cyanobacterial chassis for biosynthesis using light and CO2. Scientific Reports. 2014, 5: 8132

    Article  Google Scholar 

  47. Varman A, Yu Y, You L, Tang Y. Photoautotrophic production of D-lactic acid in an engineered cyanobacterium. Microbial Cell Factories. 2013, 12(1): 117

    Article  Google Scholar 

  48. Bandyopadhyay A, Stöckel J, Min H, Sherman L A, Pakrasi H B. High rates of photobiological H2 production by a cyanobacterium under aerobic conditions. Nature Communications. 2010, 1(9): 139

    Article  Google Scholar 

  49. Feng X, Bandyopadhyay A, Berla B, Page L, Wu B, Pakrasi H B, Tang Y J. Mixotrophic and photoheterotrophic metabolism in Cyanothece sp. ATCC 51142 under continuous light. Microbiology. 2010, 156(8): 2566–2574

    Article  CAS  Google Scholar 

  50. Alagesan S, Gaudana S, Sinha A, Wangikar P. Metabolic flux analysis of Cyanothece sp. ATCC 51142 under mixotrophic conditions. Photosynthesis Research. 2013, 118(1–2): 191–198

    Article  CAS  Google Scholar 

  51. Evans M C, Buchanan B B, Arnon D I. A new ferredoxin-dependent carbon reduction cycle in a photosynthetic bacterium. Proceedings of the National Academy of Sciences of the United States of America. 1966, 55(4): 928–934

    Article  CAS  Google Scholar 

  52. Herter S, Fuchs G, Bacher A, Eisenreich W. A bicyclic autotrophic CO2 fixation pathway in Chloroflexus aurantiacus. Journal of Biological Chemistry. 2002, 277(23): 20277–20283

    Article  CAS  Google Scholar 

  53. Scholz I, Lange S J, Hein S, Hess W R, Backofen R. CRISPR-Cas systems in the cyanobacterium Synechocystis sp. PCC6803 exhibit distinct processing pathways involving at least two Cas6 and a Cmr2 protein. PLoS One. 2013, 8(2): e56470

    Article  CAS  Google Scholar 

  54. Gao Z, Zhao H, Li Z, Tan X, Lu X. Photosynthetic production of ethanol from carbon dioxide in genetically engineered cyanobacteria. Energy & Environmental Science. 2012, 5(12): 9857–9865

    Article  CAS  Google Scholar 

  55. Trinh C T, Unrean P, Srienc F. Minimal Escherichia coli cell for the most efficient production of ethanol from hexoses and pentoses. Applied and Environmental Microbiology. 2008, 74(12): 3634–3643

    Article  CAS  Google Scholar 

  56. Baez A, Cho K M, Liao J. High-flux isobutanol production using engineered Escherichia coli: A bioreactor study with in situ product removal. Applied Microbiology and Biotechnology. 2011, 90(5): 1681–1690

    Article  CAS  Google Scholar 

  57. Tan X, Yao L, Gao Q, Wang W, Qi F, Lu X. Photosynthesis driven conversion of carbon dioxide to fatty alcohols and hydrocarbons in cyanobacteria. Metabolic Engineering. 2011, 13(2): 169–176

    Article  CAS  Google Scholar 

  58. Zheng Y N, Li L L, Liu Q, Yang J M, Wang X W, Liu W, Xu X, Liu H, Zhao G, Xian M. Optimization of fatty alcohol biosynthesis pathway for selectively enhanced production of C12/14 and C16/18 fatty alcohols in engineered Escherichia coli. Microbial Cell Factories. 2012, 11(1): 65

    Article  CAS  Google Scholar 

  59. Wang W, Liu X, Lu X. Engineering cyanobacteria to improve photosynthetic production of alkanes. Biotechnology for Biofuels. 2013, 6(1): 69

    Article  CAS  Google Scholar 

  60. Schirmer A, Rude M A, Li X, Popova E, Del Cardayre S B. Microbial biosynthesis of alkanes. Science. 2010, 329(5991): 559–562

    Article  CAS  Google Scholar 

  61. He L, Xiao Y, Gebreselassie N, Zhang F, Antoniewicz MR, Tang Y J, Peng L. Central metabolic responses to the overproduction of fatty acids in Escherichia coli based on 13C-metabolic flux analysis. Biotechnology and Bioengineering. 2014, 111(3): 575–585

    Article  CAS  Google Scholar 

  62. Xiong W, Morgan J A, Ungerer J, Wang B, Maness P C, Yu J. The plasticity of cyanobacterial metabolism supports direct CO2 conversion to ethylene. Nature Plants, 2015: 15053

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Le You.

Additional information

Dedicated to the 120th Anniversary of Tianjin University

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, N., Abernathy, M., Tang, J.KH. et al. Cyanobacterial photo-driven mixotrophic metabolism and its advantages for biosynthesis. Front. Chem. Sci. Eng. 9, 308–316 (2015). https://doi.org/10.1007/s11705-015-1521-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-015-1521-7

Keywords

Navigation