Skip to main content
Log in

Treatment of landfill waste, leachate and landfill gas: A review

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

This review aims at the treatment of the entire landfill, including the waste mass and the harmful emissions: leachate and landfill gas. Different landfill treatments (aerobic, anaerobic and semi-aerobic bioreactor landfills, dry-tomb landfills), leachate treatments (anaerobic and aerobic treatments, anammox, adsorption, chemical oxidation, coagulation/flocculation and membrane processes) and landfill gas treatments (flaring, adsorption, absorption, permeation and cryogenic treatments) are reviewed. Available information and the gaps present in current knowledge is summarized. The most significant areas to expand are landfill waste treatments, which in recent years has begun to grow but there is an opportunity for much more. Another area to explore is the treatment of landfill gas, a very large field to which not much effort has been put forth. This review is to compare different treatment methods and give direction to future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. United States Environmental Protection Agency. Municipal solid waste generation, recycling, and disposal in the United States: Facts and figures for 2012. 2014, http://www.epa.gov/solidwaste/nonhaz/municipal/pubs/2012_msw_fs.pdf

    Google Scholar 

  2. Arsova L, van Haaren R, Goldstein N, Kaufman S M, Themelis N J. The state of garbage in America. BioCycle, 2008, 49(12), 22

    Google Scholar 

  3. Hudgins M, Harper S. Operational characteristics of two aerobic landfill systems. 1999, http://epa.gov/projectxl/buncombe/aerobic.pdf

    Google Scholar 

  4. Huber-Humer M, Kjeldsen P, Spokas K A. Special issue on landfill gas emission and mitigation. Waste Management, 2011, 31(5): 821–822

    Article  Google Scholar 

  5. Bogner J, Pipatti R, Hashimoto S, Diaz C, Mareckova K, Diaz L, Kjeldsen P, Monni S, Faaij A, Gao Q, Zhang T, Ahmed M A, Sutamihardja R T M, Gregory R. Mitigation of global greenhouse gas emissions from waste: Conclusions and strategies from the intergovernmental panel on climate change (IPCC) fourth assessment report. Working Group III (Mitigation). Waste Management & Research, 2008, 26(1): 11–32

    Article  CAS  Google Scholar 

  6. Rasmussen R A, Khalil M A K. Atmospheric methane in the recent and ancient atmospheres: Concentrations, trends, and interhemispheric gradient. Journal of Geophysical Research, D, Atmospheres, 1984, 89(D7): 11599–11605

    Article  CAS  Google Scholar 

  7. Mehta R, Barlaz M, Yazdani R, Augenstein D, Bryars M, Sinderson L. Refuse decomposition in the presence and absence of leachate recirculation. Journal of Environmental Engineering, 2002, 128(3): 228–236

    Article  CAS  Google Scholar 

  8. Reinhart D R, McCreanor P T, Townsend T. The bioreactor landfill: Its status and future. Waste Management & Research, 2002, 20(2): 172–186

    Article  CAS  Google Scholar 

  9. Reinhart D R, Townsend T. Landfill Bioreactor Design and Operation. New York: Lewis Publishers, 1998

    Google Scholar 

  10. Kulkarni H S, Reddy K R. Moisture distribution in bioreactor landfills: A review. Indian Geotechnical Journal, 2012, 42(3): 125–149

    Article  Google Scholar 

  11. Reddy K, Hettiarachchi H, Parakalla N, Gangathulasi J, Bogner J, Lagier T. Hydraulic Conductivity of MSW in Landfills. Journal of Environmental Engineering, 2009, 135(8): 677–683

    Article  CAS  Google Scholar 

  12. Jiang J, Yang G, Deng Z, Huang Y, Huang Z, Feng X, Zhou S, Zhang C. Pilot-scale experiment on anaerobic bioreactor landfills in China. Waste Management, 2007, 27(7): 893–901

    Article  CAS  Google Scholar 

  13. McCreanor P, Reinhart D. Hydrodynamic modeling of leachate recirculating landfills. Waste Management & Research, 1999, 17(6): 465–469

    Article  Google Scholar 

  14. Westlake K. Sustainable landfill—possibility or pipe-dream? Waste Management & Research, 1997, 15(5): 453–461

    Google Scholar 

  15. Wang Y, Pelkonen M, Kaila J. Optimization of landfill leachate management in the aftercare period. Waste Management & Research, 2012, 30(8): 789–799

    Article  CAS  Google Scholar 

  16. Méry J, Bayer S. Comparison of external costs between dry tomb and bioreactor landfills: Taking intergenerational effects seriously. Waste Management & Research, 2005, 23(6): 514–526

    Article  Google Scholar 

  17. Laner D, Crest M, Scharff H, Morris J W F, Barlaz M A. A review of approaches for the long-term management of municipal solid waste landfills. Waste Management, 2012, 32(3): 498–512

    Article  CAS  Google Scholar 

  18. Hirata O, Matsufuji Y, Tachifuji A, Yanase R. Waste stabilization mechanism by a recirculatory semi-aerobic landfill with the aeration system. Journal of Material Cycles and Waste Management, 2012, 14(1): 47–51

    Article  CAS  Google Scholar 

  19. Ritzkowski M, Heyer K U, Stegmann R. Fundamental processes and implications during in situ aeration of old landfills. Waste Management, 2006, 26(4): 356–372

    Article  CAS  Google Scholar 

  20. Benefield J C, Randall S J. Biological Process Design for Wastewater Treatment. New Jersey: Prentice-Hall, 1980

    Google Scholar 

  21. Dong J, Sheng H, Wen C, Hong M, Jiang H. Effects of phosphorous on the stabilization of solid waste in anaerobic landfill. Process Safety and Environmental Protection, 2013, 91(6): 483–488

    Article  CAS  Google Scholar 

  22. Jegatheesan V, Kastl G, Fisher I, Chandy J, Angles M. Modeling bacterial growth in drinking water: Effect of nutrients. American Water Works Association Journal, 2004, 96(5): 129–135

    CAS  Google Scholar 

  23. Miettinen I T, Vartiainen T, Martikainen P J. Phosphorus and bacterial growth in drinking water. Applied and Environmental Microbiology, 1997, 63(8): 3242–3245

    CAS  Google Scholar 

  24. Sathasivan A, Ohgaki S, Yamamoto K, Kamiko N. Role of inorganic phosphorus in controlling regrowth in water distribution system. Water Science and Technology, 1997, 35(8): 37–44

    Article  CAS  Google Scholar 

  25. Fielding E R, Archer D B, de Macario E C, Macario A J L. Isolation and characterization of methanogenic bacteria from landfills. Applied and Environmental Microbiology, 1988, 54(3): 835–836

    CAS  Google Scholar 

  26. Ritzkowski M, Stegmann R. Landfill aeration worldwide: Concepts, indications and findings. Waste Management, 2012, 32(7): 1411–1419

    Article  CAS  Google Scholar 

  27. Leikam K, Heyer K U, Stegmann R. In situ stabilization of completed landfills and old sites. In: Proceedings Sardinia, 1997. Sixth International Waste Management Landfill Symptomatology. Cagliari, Italy, 1997

    Google Scholar 

  28. Berge N D, Reinhart D R, Townsend T G. The fate of nitrogen in bioreactor landfills. Critical Reviews in Environmental Science and Technology, 2005, 35(4): 365–399

    Article  CAS  Google Scholar 

  29. Bonany J E, Geel P J V, Gunay H B, Isgor O B. Simulating waste temperatures in an operating landfill in Québec, Canada. Waste Management & Research, 2013, 31(7): 692–699

    Article  Google Scholar 

  30. Crutcher A J, Rovers F A, McBean E A. Temperature as an indicator of landfill behavior. Water, Air, and Soil Pollution, 1982, 17(2): 213–223

    Article  CAS  Google Scholar 

  31. Hettiarachchi H, Meegoda J, Hettiaratchi P. Effects of gas and moisture on modeling of bioreactor landfill settlement. Waste Management, 2009, 29(3): 1018–1025

    Article  CAS  Google Scholar 

  32. Öncü G, Reiser M, Kranert M. Aerobic in situ stabilization of Landfill Konstanz Dorfweiher: Leachate quality after 1 year of operation. Waste Management, 2012, 32(12): 2374–2384

    Article  CAS  Google Scholar 

  33. Zanetti M C. Aerobic biostabilization of old MSW landfills. American Journal Engineering Application Science, 2008, 1(4): 393–398

    Article  Google Scholar 

  34. Erses A S, Onay T T, Yenigun O. Comparison of aerobic and anaerobic degradation of municipal solid waste in bioreactor landfills. Bioresource Technology, 2008, 99(13): 5418–5426

    Article  CAS  Google Scholar 

  35. Slezak R, Krzystek L, Ledakowicz S. Mathematical model of aerobic stabilization of old landfills. Chemical Papers, 2012, 66(6): 543–549

    Article  CAS  Google Scholar 

  36. Wu C, Shimaoka T, Nakayama H, Komiya T, Chai X, Hao Y. Influence of aeration modes on leachate characteristic of landfills that adopt the aerobic-anaerobic landfill method. Waste Management, 2014, 34(1): 101–111

    Article  CAS  Google Scholar 

  37. Borglin S E, Hazen T C, Oldenburg C M, Zawislanski P T. Comparison of aerobic and anaerobic biotreatment of municipal solid waste. Journal of the Air & Waste Management Association, 2004, 54(7): 815–822

    Article  CAS  Google Scholar 

  38. Vitello C. Aerobic degradation: increasing landfill efficiency. Solid Waste Recycle, 2001, 6(1): 25–27

    Google Scholar 

  39. Bilgili M S, Demir A, Varank G. Effect of leachate recirculation and aeration on volatile fatty acid concentrations in aerobic and anaerobic landfill leachate. Waste Management & Research, 2012, 30(2): 161–170

    Article  CAS  Google Scholar 

  40. Zhang X, Matsuto T. Assessment of internal condition of waste in a roofed landfill. Waste Management, 2013, 33(1): 102–108

    Article  CAS  Google Scholar 

  41. Bilgili MS, Demir A, Özkaya B. Influence of leachate recirculation on aerobic and anaerobic decomposition of solid wastes. Journal of Hazardous Materials, 2007, 143(1–2): 177–183

    Article  CAS  Google Scholar 

  42. Kallel A, Matsuto T, Tanaka N. Determination of oxygen consumption for landfilled municipal solid wastes.Waste Management & Research, 2003, 21(4): 346–355

    Article  CAS  Google Scholar 

  43. El-Fadel M, Fayyad W, Hashisho J. Enhanced solid waste stabilization in aerobic landfills using low aeration rates and high density compaction. Waste Management & Research, 2013, 31(1): 30–40

    Article  CAS  Google Scholar 

  44. Warith M. Bioreactor landfills: Experimental and field results. Waste Management, 2002, 22(1): 7–17

    Article  CAS  Google Scholar 

  45. Yang Y, Yue B, Yang Y, Huang Q. Influence of semi-aerobic and anaerobic landfill operation with leachate recirculation on stabilization processes. Waste Management & Research, 2011, 30(3): 255–265

    Article  CAS  Google Scholar 

  46. Tang P, Zhao Y, Liu D. A laboratory study on stabilization criteria of semi-aerobic landfill. Waste Management & Research, 2008, 26(6): 566–572

    Article  CAS  Google Scholar 

  47. Huang Q, Yang Y, Pang X, Wang Q. Evolution on qualities of leachate and landfill gas in the semi-aerobic landfill. Journal of Environmental Sciences (China), 2008, 20(4): 499–504

    Article  CAS  Google Scholar 

  48. Aziz S Q, Aziz H A, Yusoff MS, Bashir M J K, Umar M. Leachate characterization in semi-aerobic and anaerobic sanitary landfills: a comparative study. Journal of Environmental Management, 2010, 91(12): 2608–2614

    Article  CAS  Google Scholar 

  49. Kumar S, Chiemchaisri C, Mudhoo A. Bioreactor landfill technology in municipal solid waste treatment: An overview. Critical Reviews in Biotechnology, 2010, 31(1): 77–97

    Article  CAS  Google Scholar 

  50. Green L C. US Patent, 5888022, 1999-03-30

  51. Yazdani R, Mostafid M E, Han B, Imhoff P T, Chiu P, Augenstein D, Kayhanian M, Tchobanoglous G. Quantifying factors limiting aerobic degradation during aerobic bioreactor landfilling. Environmental Science & Technology, 2010, 44(16): 6215–6220

    Article  CAS  Google Scholar 

  52. Rendra S, Warith M A, Fernandes L. Degradation of municipal solid waste in aerobic bioreactor landfills. Environmental Technology, 2007, 28(6): 609–620

    Article  CAS  Google Scholar 

  53. Wadkar D V, Modak P R, Chavan V S. Aerobic thermophilic composting of municipal solid waste. International Journal of Engineering Science and Technology, 2013, 5(3): 716–718

    Google Scholar 

  54. Senior E, ed. Microbiology of Landfill Sites. 2nd ed. Boca Raton: Lewis Publishers, 1995

    Google Scholar 

  55. Renou S, Givaudan J G, Poulain S, Dirassouyan F, Moulin P. Landfill leachate treatment: Review and opportunity. Journal of Hazardous Materials, 2008, 150(3): 468–493

    Article  CAS  Google Scholar 

  56. Lu J C S, Eichenberger B, Stearns R J. Leachate from municipal landfills: Production and management. New Jersey: Noyes Publications, 1985

    Google Scholar 

  57. Vadillo I, Carrasco F, Andreo B, de Torres A G, Bosch C. Chemical composition of landfill leachate in a karst area with a Mediterranean climate (Marbella, southern Spain). Environmental Geology, 1999, 37(4): 326–332

    Article  CAS  Google Scholar 

  58. Hudgins M P, March J. In-situ solid waste composting using an aerobic landfill system. In: Oral Present. Conference Attendees Composting in the Southeast, 1998

    Google Scholar 

  59. Wiszniowski J, Robert D, Surmacz-Gorska J, Miksch K, Weber J V. Landfill leachate treatment methods: A review. Environmental Chemistry Letters, 2006, 4(1): 51–61

    Article  CAS  Google Scholar 

  60. Dhokpande S R, Kaware J P. Biological methods for heavy metal removal—A review. International Journal Engineering Science Innovation Technology, 2013, 2(5): 304–309

    Google Scholar 

  61. Rivas F J, Beltrán F, Carvalho F, Acedo B, Gimeno O. Stabilized leachates: Sequential coagulation-flocculation + chemical oxidation process. Journal of Hazardous Materials, 2004, 116(1–2): 95–102

    Article  CAS  Google Scholar 

  62. Berrueta J, Castrillón L. Anaerobic treatment of leachates in UASB reactors. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 1992, 54(1): 33–37

    Article  CAS  Google Scholar 

  63. Chang J E. Treatment of landfill leachate with an upflow anaerobic reactor containing a sludge bed and a filter. Water Science and Technology, 1989, 21: 133–143

    CAS  Google Scholar 

  64. Henry J G, Prasad D, Young H. Removal of organics from leachates by anaerobic filter. Water Research, 1987, 21(11): 1395–1399

    Article  CAS  Google Scholar 

  65. Kennedy K J, Hamoda M F, Guiot S G. Anaerobic treatment of leachate using fixed film and sludge bed filter systems. Journal-Water Pollution Control Federation, 1988, 60(9): 1675–1683

    CAS  Google Scholar 

  66. Timur H, Özturk I. Anaerobic sequencing batch reactor treatment of landfill leachate. Water Research, 1999, 33(15): 3225–3230

    Article  CAS  Google Scholar 

  67. Cameron R D, Koch F A. Trace metals and anaerobic digestion of leachate. Journal-Water Pollution Control Federation, 1980, 52(2): 282–292

    CAS  Google Scholar 

  68. Kheradmand S, Karimi-Jashni A, Sartaj M. Treatment of municipal landfill leachate using a combined anaerobic digester and activated sludge system. Waste Management, 2010, 30(6): 1025–1031

    Article  CAS  Google Scholar 

  69. Kim H, Jang Y C, Townsend T. The behavior and long-term fate of metals in simulated landfill bioreactors under aerobic and anaerobic conditions. Journal of Hazardous Materials, 2011, 194: 369–377

    Article  CAS  Google Scholar 

  70. Robinson H D, Barr M J. Aerobic biological treatment of landfill leachates. Waste Management & Research, 1999, 17(6): 478–486

    Article  CAS  Google Scholar 

  71. Giannis A, Makripodis G, Simantiraki F, Somara M, Gidarakos E. Monitoring operational and leachate characteristics of an aerobic simulated landfill bioreactor. Waste Management, 2008, 28(8): 1346–1354

    Article  CAS  Google Scholar 

  72. Liu Y. Chemically reduced excess sludge production in the activated sludge process. Chemosphere, 2003, 50(1): 1–7

    Article  CAS  Google Scholar 

  73. Bilgili M S, Demir A, Özkaya B. Quality and quantity of leachate in aerobic pilot-scale landfills. Environmental Management, 2006, 38(2): 189–196

    Article  Google Scholar 

  74. Sartaj M, Ahmadifar M, Jashni A K. Assessment of in-situ aerobic treatment of municipal landfill leachate at laboratory scale. Iranian Journal of Sciene and Technology Transaction B-Engineering, 2010, 34(B1): 107–116

    CAS  Google Scholar 

  75. Wei Y, Ji M, Li R, Qin F. Organic and nitrogen removal from landfill leachate in aerobic granular sludge sequencing batch reactors. Waste Management, 2012, 32(3): 448–455

    Article  CAS  Google Scholar 

  76. Yahmed A B, Saidi N, Trabelsi I, Murano F, Dhaifallah T, Bousselmi L, Ghrabi A. Microbial characterization during aerobic biological treatment of landfill leachate (Tunisia). Desalination, 2009, 246(1–3): 378–388

    Article  CAS  Google Scholar 

  77. Andrés P, Gutierrez F, Arrabal C, Cortijo M. Aerobic biological treatment of leachates from municipal solid waste landfill. Journal of Environment Science Health, Part A. Environmental Sciences, 2004, 39(5): 1319–1328

    Article  CAS  Google Scholar 

  78. Bilgili M S, Demir A, Akkaya E, Özkaya B. COD fractions of leachate from aerobic and anaerobic pilot scale landfill reactors. Journal of Hazardous Materials, 2008, 158(1): 157–163

    Article  CAS  Google Scholar 

  79. Kamaruddin M A, Yusoff M S, Aziz H A, Basri N K. Removal of COD, ammoniacal nitrogen and colour from stabilized landfill leachate by anaerobic organism. Applied Water Science, 2013, 3(2): 359–366

    Article  CAS  Google Scholar 

  80. Thabet O B D, Bouallagui H, Cayol J, Ollivier B, Fardeau M L, Hamdi M. Anaerobic degradation of landfill leachate using an upflow anaerobic fixed-bed reactor with microbial sulfate reduction. Journal of Hazardous Materials, 2009, 167(1–3): 1133–1140

    Article  CAS  Google Scholar 

  81. David R. Environmental microbiology: Deciphering anammox. Nature Reviews. Microbiology, 2011, 9(12): 833

    Google Scholar 

  82. Kartal B, Maalcke W J, de Almeida N M, Cirpus I, Gloerich J, Geerts W, Op den Camp H J M, Harhangi H R, Janssen-Megens E M, Francoijs K J, Stunnenberg H G, Keltjens J T, Jetten M S M, Strous M. Molecular mechanism of anaerobic ammonium oxidation. Nature, 2011, 479(7371): 127–130

    Article  CAS  Google Scholar 

  83. Strous M, Van Gerven E, Zheng P, Kuenen J G, Jetten M S M. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (Anammox) process in different reactor configurations. Water Research, 1997, 31(8): 1955–1962

    Article  CAS  Google Scholar 

  84. Kartal B, Kuenen J G, van Loosdrecht M C M. Sewage treatment with anammox. Science, 2010, 328(5979): 702–703

    Article  CAS  Google Scholar 

  85. Cema G, Wiszniowski J, Żabczyński S, Zabłocka-Godlewska E, Raszka A, Surmacz-Górska J. Biological nitrogen removal from landfill leachate by deammonification assisted by heterotrophic denitrification in a rotating biological contactor (RBC). Water Science and Technology, 2007, 55(8–9): 35–42

    Article  CAS  Google Scholar 

  86. Liu S, Yang F, Meng F, Chen H, Gong Z. Enhanced anammox consortium activity for nitrogen removal: Impacts of static magnetic field. Journal of Biotechnology, 2008, 138(3–4): 96–102

    Article  CAS  Google Scholar 

  87. Qiao S, Yin X, Zhou J, Furukawa K. Inhibition and recovery of continuous electric field application on the activity of anammox biomass. Biodegradation, 2014, 25(4): 505–513

    Article  Google Scholar 

  88. Duan X, Zhou J, Qiao S, Wei H. Application of low intensity ultrasound to enhance the activity of anammox microbial consortium for nitrogen removal. Bioresource Technology, 2011, 102(5): 4290–4293

    Article  CAS  Google Scholar 

  89. Marañón E, Castrillón L, Fernández-Nava Y, Fernández-Méndez A, Fernández-Sánchez A. Tertiary treatment of landfill leachates by adsorption.Waste Management & Research, 2009, 27(5): 527–533

    Article  CAS  Google Scholar 

  90. Malliou E, Loizidou M, Spyrellis N. Uptake of lead and cadmium by clinoptilolite. Science of the Total Environment, 1994, 149(3): 139–144

    Article  CAS  Google Scholar 

  91. Davis M E, Lobo R F. Zeolite and molecular sieve synthesis. Chemistry of Materials, 1992, 4(4): 756–768

    Article  CAS  Google Scholar 

  92. Zamzow M J, Eichbaum B R, Sandgren K R, Shanks D E. Removal of heavy metals and other cations from wastewater using zeolites. Separation Science and Technology, 1990, 25(13–15): 1555–1569

    Article  CAS  Google Scholar 

  93. Marco A, Esplugas S, Saum G. How and why combine chemical and biological processes for wastewater treatment. Water Science and Technology, 1997, 35(4): 321–327

    Article  CAS  Google Scholar 

  94. Derco J, Gotvajn A Ž, Zagorc-Končan J, Almásiová B, Kassai A. Pretreatment of landfill leachate by chemical oxidation processes. Chemical Papers, 2010, 64(2): 237–245

    Article  CAS  Google Scholar 

  95. Boumechhour F, Rabah K, Lamine C, Said B M. Treatment of landfill leachate using Fenton process and coagulation/flocculation. Water and Environment Journal, 2013, 27(1): 114–119

    Article  CAS  Google Scholar 

  96. Samadi M T, Saghi M H, Rahmani A, Hasanvand J, Rahimi S, Syboney M S. Hamadan landfill leachate treatment by coagulation-flocculation process. Iranian Journal of Environmental Health Sciences & Engineering, 2010, 7(3): 253–258

    CAS  Google Scholar 

  97. Tatsi A A, Zouboulis A I, Matis K A, Samaras P. Coagulation-flocculation pretreatment of sanitary landfill leachates. Chemosphere, 2003, 53(7): 737–744

    Article  CAS  Google Scholar 

  98. Amokrane A, Comel C, Veron J. Landfill leachates pretreatment by coagulation-flocculation. Water Research, 1997, 31(11): 2775–2782

    Article  CAS  Google Scholar 

  99. Ghafari S, Aziz H A, Isa M H, Zinatizadeh A A. Application of response surface methodology (RSM) to optimize coagulation-flocculation treatment of leachate using poly-aluminum chloride (PAC) and alum. Journal of Hazardous Materials, 2009, 163(2–3): 650–656

    Article  CAS  Google Scholar 

  100. Ntampou X, Zouboulis A I, Samaras P. Appropriate combination of physico-chemical methods (coagulation/flocculation and ozonation) for the efficient treatment of landfill leachates. Chemosphere, 2006, 62(5): 722–730

    Article  CAS  Google Scholar 

  101. Ameen E, Muyibi S, Abdulkarim M. Microfiltration of pretreated sanitary landfill leachate. Environmentalist, 2011, 31(3): 208–215

    Article  Google Scholar 

  102. Primo O, Rueda A, Rivero M J, Ortiz I. An integrated process, Fenton Reaction-ultrafiltration, for the treatment of landfill leachate: Pilot plant operation and analysis. Industrial & Engineering Chemistry Research, 2008, 47(3): 946–952

    Article  CAS  Google Scholar 

  103. Vandezande P, Gevers L E M, Vankelecom I F J. Solvent resistant nanofiltration: separating on a molecular level. Chemical Society Reviews, 2008, 37(2): 365–405

    Article  CAS  Google Scholar 

  104. Trebouet D, Schlumpf J P, Jaouen P, Quemeneur F. Stabilized landfill leachate treatment by combined physicochemical-nanofiltration processes. Water Research, 2001, 35(12): 2935–2942

    Article  CAS  Google Scholar 

  105. Renou S, Poulain S, Givaudan J G, Moulin P. Amelioration of ultrafiltration process by lime treatment: Case of landfill leachate. Desalination, 2009, 249(1): 72–82

    Article  CAS  Google Scholar 

  106. Chianese A, Ranauro R, Verdone N. Treatment of landfill leachate by reverse osmosis. Water Research, 1999, 33(3): 647–652

    Article  CAS  Google Scholar 

  107. Rajaram V, Siddiqui F Z, Khan M E. Landfill gas treatment technologies. In: From Landfill Gas to Energy: Technologies and Challenges, Leiden. The Netherlands: CRC/Balkema, 2012, 153–208

    Google Scholar 

  108. Mor S, Ravindra K, De Visscher A, Dahiya R P, Chandra A. Municipal solid waste characterization and its assessment for potential methane generation: a case study. Science of the Total Environment, 2006, 371(1–3): 1–10

    Article  CAS  Google Scholar 

  109. Staley B F, Xu F, Cowie S J, Barlaz M A, Hater G R. Release of trace organic compounds during the decomposition of municipal solid waste components. Environmental Science & Technology, 2006, 40(19): 5984–5991

    Article  CAS  Google Scholar 

  110. Themelis N J, Ulloa P A. Methane generation in landfills. Renewable Energy, 2007, 32(7): 1243–1257

    Article  CAS  Google Scholar 

  111. Allen M R, Braithwaite A, Hills C C. Trace organic compounds in landfill gas at seven U.K. waste disposal sites. Environmental Science & Technology, 1997, 31(4): 1054–1061

    Article  CAS  Google Scholar 

  112. Eklund B, Anderson E P, Walker B L, Burrows D B. Characterization of landfill gas composition at the fresh kills municipal solid-waste landfill. Environmental Science & Technology, 1998, 32(15): 2233–2237

    Article  CAS  Google Scholar 

  113. Thomas C L, Barlaz M A. Production of non-methane organic compounds during refuse decomposition in a laboratory-scale landfill. Waste Management & Research, 1999, 17(3): 205–211

    Article  CAS  Google Scholar 

  114. Zhang Y, Yue D, Liu J, Lu P, Wang Y, Liu J, Nie Y. Release of non-methane organic compounds during simulated landfilling of aerobically pretreated municipal solid waste. Journal of Environmental Management, 2012, 101: 54–58

    Article  CAS  Google Scholar 

  115. Powell J, Jain P, Kim H, Townsend T, Reinhart D. Changes in landfill gas quality as a result of controlled air injection. Environmental Science & Technology, 2006, 40(3): 1029–1034

    Article  CAS  Google Scholar 

  116. Goossens M A. Landfill gas power plants. Renewable Energy, 1996, 9(1–4): 1015–1018

    Article  Google Scholar 

  117. Aguilar-Virgen Q, Taboada-González P, Ojeda-Benítez S. Analysis of the feasibility of the recovery of landfill gas: A case study of Mexico. Journal of Cleaner Production, 2014, 79: 53–60

    Article  CAS  Google Scholar 

  118. Chiemchaisri C, Juanga J P, Visvanathan C. Municipal solid waste management in Thailand and disposal emission inventory. Environmental Monitoring and Assessment, 2007, 135(1–3): 13–20

    Article  CAS  Google Scholar 

  119. Faour A A, Reinhart D R, You H. First-order kinetic gas generation model parameters for wet landfills. Waste Management, 2007, 27(7): 946–953

    Article  CAS  Google Scholar 

  120. Garg A, Achari G, Joshi R C. A model to estimate the methane generation rate constant in sanitary landfills using fuzzy synthetic evaluation. Waste Management & Research, 2006, 24(4): 363–375

    Article  CAS  Google Scholar 

  121. Machado S L, Carvalho M F, Gourc J P, Vilar OM, do Nascimento J C F. Methane generation in tropical landfills: Simplified methods and field results. Waste Management, 2009, 29(1): 153–161

    Article  CAS  Google Scholar 

  122. Wanichpongpan W, Gheewala S H. Life cycle assessment as a decision support tool for landfill gas-to energy projects. Journal of Cleaner Production, 2007, 15(18): 1819–1826

    Article  Google Scholar 

  123. Abushammala M F M, Basri N E A, Basri H, Kadhum A A H, El-Shafie A H. Estimation of methane emission from landfills in Malaysia using the IPCC 2006 FOD model. Journal of Applied Science, 2010, 10(15): 1603–1609

    Article  CAS  Google Scholar 

  124. Börjesson G, Samuelsson J, Chanton J, Adolfsson R, Galle B, Svensson B H. A national landfill methane budget for Sweden based on field measurements, and an evaluation of IPCC models. Tellus. Series B, Chemical and Physical Meteorology, 2009, 61(2): 424–435

    Article  CAS  Google Scholar 

  125. Heyer K U, Hupe K, Stegmann R. Methane emissions from MBT landfills. Waste Management, 2013, 33(9): 1853–1860

    Article  CAS  Google Scholar 

  126. Penteado R, Cavalli M, Magnano E, Chiampo F. Application of the IPCC model to a Brazilian landfill: First results. Energy Policy, 2012, 42(1): 551–556

    Article  CAS  Google Scholar 

  127. Amini H R, Reinhart D R, Mackie K R. Determination of firstorder landfill gas modeling parameters and uncertainties. Waste Management, 2012, 32(2): 305–316

    Article  CAS  Google Scholar 

  128. Tintner J, Kühleitner M, Binner E, Brunner N, Smidt E. Modeling the final phase of landfill gas generation from long-term observations. Biodegradation, 2012, 23(3): 407–414

    Article  CAS  Google Scholar 

  129. Brown K A, Maunder D H. Exploitation of landfill gas: A UK perspective. Water Science and Technology, 1994, 30(12): 143–151

    CAS  Google Scholar 

  130. Han H, Long J, Li S, Qian G. Comparison of green-house gas emission reductions and landfill gas utilization between a landfill system and an incineration system. Waste Management & Research, 2010, 28(4): 315–321

    Article  CAS  Google Scholar 

  131. Jewaskiewitz B. Landfill gas recovery, green energy, and the clean development mechanism. Civil Engineering Management South African Institution of Civil Engineering, 2010, 18(7): 19–23

    Google Scholar 

  132. Solov’yanov A A. Associated petroleum gas flaring: Environmental issues. Russian Journal of General Chemistry, 2011, 81(12): 2531–2541

    Article  CAS  Google Scholar 

  133. Ménard C, Ramirez A A, Nikiema J, Heitz M. Biofiltration of methane and trace gases from landfills: A review. Environmental Reviews, 2012, 20(1): 40–53

    Article  CAS  Google Scholar 

  134. Sircar S. Separation of methane and carbon dioxide gas mixtures by pressure swing adsorption. Separation Science and Technology, 1988, 23(6–7): 519–529

    Article  Google Scholar 

  135. Shin H C, Park J W, Park K, Song H C. Removal characteristics of trace compounds of landfill gas by activated carbon adsorption. Environmental Pollution, 2002, 119(2): 227–236

    Article  CAS  Google Scholar 

  136. Gaur A, Park JW, Maken S, Song H J, Park J J. Landfill gas (LFG) processing via adsorption and alkanolamine absorption. Fuel Processing Technology, 2010, 91(6): 635–640

    Article  CAS  Google Scholar 

  137. Koros WJ, Fleming G K. Membrane-based gas separation. Journal of Membrane Science, 1993, 83(1): 1–80

    Article  CAS  Google Scholar 

  138. Rautenbach R, Welsch K. Treatment of landfill gas by gas permeation—pilot plant results and comparison to alternatives. Journal of Membrane Science, 1994, 87(1–2): 107–118

    Article  CAS  Google Scholar 

  139. Gabelman A, Hwang S T. Hollow fiber membrane contactors. Journal of Membrane Science, 1999, 159(1–2): 61–106

    Article  CAS  Google Scholar 

  140. Markbreiter S J, Weiss I. US Patent, 5596884, 1997-01-28

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sohrab Rohani.

Additional information

Sohrab Rohani, Ph.D., P. Eng., F.C.I.C.

Dr. Rohani is a professor of Chemical and Biochemical Engineering Department at the University of Western Ontario, Canada. He obtained his Ph.D. from the University of Wales in Process Control. He spent two years at the Swiss Federal Institute of Technology (ETH) in Zurich before joining the Chemical Engineering Department of the University of Saskatchewan in 1982. In 1999, he moved to the University of Western Ontario, where he served as the Chair of the Department of Chemical and Biochemical Engineering. He is the recipient of a number of awards including the Engineering Medal in Research and Development from the Professional Engineers, Ontario, and the Western Faculty of Engineering Award for Excellence in Research.

Dr. Rohani has over 400 refereed publications. He is a registered professional engineer in Ontario and a Fellow of Chemical Institute of Canada (FCIC). His main areas of research are in the development and control of active pharmaceutical ingredients, zeolitic nanomaterials, TiO2 nanophotocatalysts, and environmental research.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omar, H., Rohani, S. Treatment of landfill waste, leachate and landfill gas: A review. Front. Chem. Sci. Eng. 9, 15–32 (2015). https://doi.org/10.1007/s11705-015-1501-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-015-1501-y

Keywords

Navigation