Skip to main content
Log in

Synthesis and characterization of biocompatible polyurethanes for controlled release of hydrophobic and hydrophilic drugs

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Design of biocompatible and biodegradable polymer systems for sustained and controlled release of bioactive agents is critical for numerous biomedical applications. Here, we designed, synthesized, and characterized four polyurethane carrier systems for controlled release of model drugs. These polyurethanes are biocompatible and biodegradable because they consist of biocompatible poly(ethylene glycol) or poly(caprolactone diol) as soft segment, linear aliphatic hexamethylene diisocyanate or symmetrical aliphatic cyclic dicyclohexylmethane-4,4′-diisocyanate as hard segment, and biodegradable urethane linkage. They were characterized with Fourier transform infrared spectroscopy, atomic force microscope, and differential scanning calorimetry, whereas their degradation behaviors were investigated in both phosphate buffered saline and enzymatic solutions. By tuning polyurethane segments, different release profiles of hydrophobic and hydrophilic drugs were obtained in the absence and presence of enzymes. Such difference in release profiles was attributed to a complex interplay among structure, hydrophobicity, and degradability of polyurethanes, the size and hydrophobicity of drugs, and drug-polymer interactions. Different drug-polyurethane combinations modulated the distribution and location of the drugs in polymer matrix, thus inducing different drug release mechanisms. Our results highlight an important role of segmental structure of the polyurethane as an engineering tool to control drug release.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hashizume R, Fujimoto K L, Hong Y, Amoroso N J, Tobita K, Miki T, Keller B B, Sacks M S, Wagner W R. Morphological and mechanical characteristics of the reconstructed rat abdominal wall following use of a wet electrospun biodegradable polyurethane elastomer scaffold. Biomaterials, 2010, 31(12): 3253–3265

    Article  CAS  Google Scholar 

  2. McDevitt T C, Woodhouse K A, Hauschka S D, Murry C E, Stayton P S. Spatially organized layers of cardiomyocytes on biodegradable polyurethane films for myocardial repair. Journal of Biomedical Materials Research Part A, 2003, 66A(3): 586–595

    Article  CAS  Google Scholar 

  3. Guelcher S A. Biodegradable polyurethanes: Synthesis and applications in regenerative medicine. Tissue Engineering Part B Reviews, 2008, 14(1): 3–17

    Article  CAS  Google Scholar 

  4. Sarkar D, Yang J C, Lopina S T. Structure-property relationship of L-tyrosine-based polyurethanes for biomaterial applications. Journal of Applied Polymer Science, 2008, 108(4): 2345–2355

    Article  CAS  Google Scholar 

  5. Skarja G A, Woodhouse K A. Structure-property relationships of degradable polyurethane elastomers containing an amino acid-based chain extender. Journal of Applied Polymer Science, 2000, 75(12): 1522–1534

    Article  CAS  Google Scholar 

  6. Hong Y, Guan J, Fujimoto K L, Hashizume R, Pelinescu A L, Wagner W R. Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds. Biomaterials, 2010, 31(15): 4249–4258

    Article  CAS  Google Scholar 

  7. Wang Z, Yu L, Ding M, Tan H, Li J, Fu Q. Preparation and rapid degradation of nontoxic biodegradable polyurethanes based on poly (lactic acid)-poly(ethylene glycol)-poly(lactic acid) and l-lysine diisocyanate. Polymer Chemistry, 2011, 2(3): 601–607

    Article  CAS  Google Scholar 

  8. Sarkar D, Yang J C, Gupta A S, Lopina S T. Synthesis and characterization of L-tyrosine based polyurethanes for biomaterial applications. Journal of Biomedical Materials Research Part A, 2009, 90A(1): 263–271

    Article  CAS  Google Scholar 

  9. Skarja G A, Woodhouse K A. Synthesis and characterization of degradable polyurethane elastomers containing an amino acid-based chain extender. Journal of Biomaterials Science, Polymer Edition, 1998, 9(3): 271–295

    Article  CAS  Google Scholar 

  10. Sarkar D, Lopina S T. Oxidative and enzymatic degradations of l-tyrosine based polyurethanes. Polymer Degradation and Stability, 2007, 92(11): 1994–2004

    Article  CAS  Google Scholar 

  11. Hassan M K, Mauritz K A, Storey R F, Wiggins J S. Biodegradable aliphatic thermoplastic polyurethane based on poly(ɛ-caprolactone) and L-lysine diisocyanate. Journal of Polymer Science Part A: Polymer Chemistry, 2006, 44(9): 2990–3000

    Article  CAS  Google Scholar 

  12. Guelcher S A, Srinivasan A, Dumas J E, Didier J E, McBride S, Hollinger J O. Synthesis, mechanical properties, biocompatibility, and biodegradation of polyurethane networks from lysine polyisocyanates. Biomaterials, 2008, 29(12): 1762–1775

    Article  CAS  Google Scholar 

  13. van Minnen B, Stegenga B, van Leeuwen M B M, van Kooten T G, Bos R R M. A long-term in vitro biocompatibility study of a biodegradable polyurethane and its degradation products. Journal of Biomedical Materials Research Part A, 2006, 76A(2): 377–385

    Article  Google Scholar 

  14. Park D, Wu W, Wang Y. A functionalizable reverse thermal gel based on a polyurethane/PEG block copolymer. Biomaterials, 2011, 32(3): 777–786

    Article  CAS  Google Scholar 

  15. Garrett J T, Siedlecki C A, Runt J. Microdomain morphology of poly(urethane urea) multiblock copolymers. Macromolecules, 2001, 34(20): 7066–7070

    Article  CAS  Google Scholar 

  16. Martin D J, Meijs G F, Gunatillake P A, Yozghatlian S P, Renwick G M. The influence of composition ratio on the morphology of biomedical polyurethanes. Journal of Applied Polymer Science, 1999, 71(6): 937–952

    Article  CAS  Google Scholar 

  17. Fernández d’Arlas B, Rueda L, de la Caba K, Mondragon I, Eceiza A. Microdomain composition and properties differences of biodegradable polyurethanes based on MDI and HDI. Polymer Engineering & Science, 2008, 48(3): 519–529

    Article  Google Scholar 

  18. Hood M A, Wang B, Sands J M, La Scala J J, Beyer F L, Li C Y. Morphology control of segmented polyurethanes by crystallization of hard and soft segments. Polymer, 2010, 51(10): 2191–2198

    Article  CAS  Google Scholar 

  19. James Korley L T, Liff S M, Kumar N, McKinley G H, Hammond P T. Preferential association of segment blocks in polyurethane nanocomposites. Macromolecules, 2006, 39(20): 7030–7036

    Article  Google Scholar 

  20. Petrović Z S, Ferguson J. Polyurethane elastomers. Progress in Polymer Science, 1991, 16(5): 695–836

    Article  Google Scholar 

  21. Waletzko R S, Korley L T J, Pate B D, Thomas E L, Hammond P T. Role of increased crystallinity in deformation-induced structure of segmented thermoplastic polyurethane elastomers with PEO and PEO-PPO-PEO soft segments and HDI hard segments. Macromolecules, 2009, 42(6): 2041–2053

    Article  CAS  Google Scholar 

  22. Takahara A, Hergenrother R W, Coury A J, Cooper S L. Effect of soft segment chemistry on the biostability of segmented polyurethanes. II. In vitro hydrolytic degradation and lipod sorption. Journal of Biomedical Materials Research, 1992, 26(6): 801–818

    Article  CAS  Google Scholar 

  23. Desai S, Thakore I M, Sarawade B D, Devi S. Effect of polyols and diisocyanates on thermo-mechanical and morphological properties of polyurethanes. European Polymer Journal, 2000, 36(4): 711–725

    Article  CAS  Google Scholar 

  24. Uhrich K E, Cannizzaro S M, Langer R S, Shakesheff K M. Polymeric systems for controlled drug release. Chemical Reviews, 1999, 99(11): 3181–3198

    Article  CAS  Google Scholar 

  25. Caldorera-Moore M E, Liechty W B, Peppas N A. Responsive theranostic systems: Integration of diagnostic imaging agents and responsive controlled release drug delivery carriers. Accounts of Chemical Research, 2011, 44(10): 1061–1070

    Article  CAS  Google Scholar 

  26. Peppas N A, Keys K B, Torres-Lugo M, Lowman A M. Poly (ethylene glycol)-containing hydrogels in drug delivery. Journal of Controlled Release, 1999, 62(1–2): 81–87

    Article  CAS  Google Scholar 

  27. Langer R. Polymer-controlled drug delivery systems. Accounts of Chemical Research, 1993, 26(10): 537–542

    Article  CAS  Google Scholar 

  28. Edlund U, Albertsson A C. Degradable polymer microspheres for controlled drug delivery. In: Degradable Aliphatic Polyesters. Berlin: Springer Berlin Heidelberg, 2002, 157: 67–112

    CAS  Google Scholar 

  29. Kissel T, Li Y, Unger F. ABA-triblock copolymers from biodegradable polyester A-blocks and hydrophilic poly(ethylene oxide) B-blocks as a candidate for in situ forming hydrogel delivery systems for proteins. Advanced Drug Delivery Reviews, 2002, 54(1): 99–134

    Article  CAS  Google Scholar 

  30. Jain R A. The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide) (PLGA) devices. Biomaterials, 2000, 21(23): 2475–2490

    Article  CAS  Google Scholar 

  31. Shen E, Kipper M J, Dziadul B, Lim M K, Narasimhan B. Mechanistic relationships between polymer microstructure and drug release kinetics in bioerodible polyanhydrides. Journal of Controlled Release, 2002, 82(1): 115–125

    Article  CAS  Google Scholar 

  32. Puttipipatkhachorn S, Nunthanid J, Yamamoto K, Peck G E. Drug physical state and drug-polymer interaction on drug release from chitosan matrix films. Journal of Controlled Release, 2001, 75(1–2): 143–153

    Article  CAS  Google Scholar 

  33. Yui N, Kataoka K, Yamada A, Sakurai Y, Sanui K, Ogata N. Drug release from monolithic devices of segmented polyether-poly (urethane-urea)s having both hydrophobic and hydrophilic soft segments. Die Makromolekulare Chemie, Rapid Communications, 1986, 7(11): 747–750

    Article  CAS  Google Scholar 

  34. Yui N, Kataoka K, Yamada A, Sakurai Y. Novel design of microreservoir-dispersed matrices for drug delivery formulations: Regulative drug release from poly(ethylene oxide)- and poly (tetramethylene oxide)-based segmented polyurethanes. Journal of Controlled Release, 1987, 6(1): 329–342

    Article  CAS  Google Scholar 

  35. Sarkar D, Yang J C, Gupta A S, Lopina S T. Synthesis and characterization of L-tyrosine based polyurethanes for biomaterial applications. Journal of Biomedical Materials Research Part A, 2009, 90A(1): 263–271

    Article  CAS  Google Scholar 

  36. Yang J C, Zhao C, Hsieh I F, Subramanian S, Liu L, Cheng G, Li L, Cheng S Z D, Zheng J. Strong resistance of poly (ethylene glycol) based L-tyrosine polyurethanes to protein adsorption and cell adhesion. Polymer International, 2012, 61(4): 616–621

    Article  CAS  Google Scholar 

  37. Guo Q, Knight P T, Mather P T. Tailored drug release from biodegradable stent coatings based on hybrid polyurethanes. Journal of Controlled Release, 2009, 137(3): 224–233

    Article  CAS  Google Scholar 

  38. Yamaoka T, Makita Y, Sasatani H, Kim S I, Kimura Y. Linear type azo-containing polyurethane as drug-coating material for colonspecific delivery: Its properties, degradation behavior, and utilization for drug formulation. Journal of Controlled Release, 2000, 66(2-3): 187–197

    Article  CAS  Google Scholar 

  39. Hong Y, Ye S H, Pelinescu A L, Wagner W R. Synthesis, characterization, and paclitaxel release from a biodegradable, elastomeric, poly(ester urethane)urea bearing phosphorylcholine groups for reduced thrombogenicity. Biomacromolecules, 2012, 13(11): 3686–3694

    Article  CAS  Google Scholar 

  40. Ratner B D, Gladhill K W, Horbett T A. Analysis of in vitro enzymatic and oxidative degradation of polyurethanes. Journal of Biomedical Materials Research, 1988, 22(6): 509–527

    Article  CAS  Google Scholar 

  41. Christenson E M, Patel S, Anderson J M, Hiltner A. Enzymatic degradation of poly(ether urethane) and poly(carbonate urethane) by cholesterol esterase. Biomaterials, 2006, 27(21): 3920–3926

    Article  CAS  Google Scholar 

  42. Mishra A, Aswal V K, Maiti P. Nanostructure to microstructure selfassembly of aliphatic polyurethanes: The effect on mechanical properties. The Journal of Physical Chemistry B, 2010, 114(16): 5292–5300

    Article  CAS  Google Scholar 

  43. Zhou L, Yu L, Ding M, Li J, Tan H, Wang Z, Fu Q. Synthesis and characterization of pH-sensitive biodegradable polyurethane for potential drug delivery applications. Macromolecules, 2011, 44(4): 857–864

    Article  CAS  Google Scholar 

  44. Hesketh T R, Van Bogart J W C, Cooper S L. Differential scanning calorimetry analysis of morphological changes in segmented elastomers. Polymer Engineering & Science, 1980, 20(3): 190–197

    Article  CAS  Google Scholar 

  45. Siegmann A, Cohen D, Narkis M. Polyurethane elastomers containing polybutadiene and aliphatic diols: Structure-property relationships. Polymer Engineering & Science, 1987, 27(15): 1187–1194

    Article  CAS  Google Scholar 

  46. Lee D K, Tsai H B. Properties of segmented polyurethanes derived from different diisocyanates. Journal of Applied Polymer Science, 2000, 75(1): 167–174

    Article  CAS  Google Scholar 

  47. Ikeda Y, Kohjiya S, Takesako S, Yamashita S. Polyurethane elastomer with PEO-PTMO-PEO soft segment for sustained release of drugs. Biomaterials, 1990, 11(8): 553–560

    Article  CAS  Google Scholar 

  48. Shen E, Pizsczek R, Dziadul B, Narasimhan B. Microphase separation in bioerodible copolymers for drug delivery. Biomaterials, 2001, 22(3): 201–210

    Article  CAS  Google Scholar 

  49. Santerre J P, Woodhouse K, Laroche G, Labow R S. Understanding the biodegradation of polyurethanes: From classical implants to tissue engineering materials. Biomaterials, 2005, 26(35): 7457–7470

    Article  CAS  Google Scholar 

  50. Huang X, Lowe T L. Biodegradable thermoresponsive hydrogels for aqueous encapsulation and controlled release of hydrophilic model drugs. Biomacromolecules, 2005, 6(4): 2131–2139

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Debanjan Sarkar or Jie Zheng.

Additional information

These authors contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Chen, H., Yuan, Y. et al. Synthesis and characterization of biocompatible polyurethanes for controlled release of hydrophobic and hydrophilic drugs. Front. Chem. Sci. Eng. 8, 498–510 (2014). https://doi.org/10.1007/s11705-014-1451-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-014-1451-9

Keywords

Navigation