Skip to main content
Log in

Best operating conditions to produce hydroxyapatite nanoparticles by means of a spinning disc reactor

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

In this work, Mg2+ doped hydroxyapatite (Mg-HAP) nanoparticles were produced by a reactionprecipitation process by using a spinning disc reactor (SDR) at high rotational speed. The production process of these nanoparticles consisted of the neutralization reaction between two aqueous solutions of calcium chloride and ammonia orthophosphate at room temperature. By operating at pH = 10, a high purity Mg-HAP nanoparticles were obtained. In particular, they were 51 nm in average size when the two reagents were fed over the disc symmetrically at 3 cm from the disc center and a rotational speed of the disc reactor equal to 1400 r/min was adopted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Webster T J, Massa-Schlueter E, Smith J, Slamovich E. Osteoblast response to hydroxyapatite doped with divalent and trivalent cations. Biomaterials, 2004, 25(11): 2111–2121

    Article  CAS  Google Scholar 

  2. Pina S, Olhero S, Gheduzzi S, Miles A, Ferreira J. Influence of setting liquid composition and liquid-to-powder ratio on properties of a Mg-substituted calcium phosphate cement. Acta Biomaterialia, 2009, 5(4): 1233–1240

    Article  CAS  Google Scholar 

  3. Landi E, Logroscino G, Proietti L, Tampieri A, Sandri M, Sipro S. Biomimetic Mg-substituted hydroxyapatite: from synthesis to in vivo behavior. Journal of Materials Science. Materials in Medicine, 2008, 19(1): 239–247

    Article  CAS  Google Scholar 

  4. Jahnen-Dechent W, Ketteler M. Magnesium basics. Clinical Kidney Journal, 2012, 5(Suppl 1): i3–i14

    Article  CAS  Google Scholar 

  5. Landi E, Tampieri A, Celotti G, Langenati R, Sandri M, Sipro S. Nucleation of hydroxyapatite in synthetic body fluid dense and porous scaffold development: from synthesis to in vivo behavior. Biomaterials, 2005, 26: 2835–2845

    Article  CAS  Google Scholar 

  6. Bigi A, Falini G, Foresti E, Gazzano M, Ripamonti A, Roveri N. Magnesium influence on hydroxyapatite crystallization. Journal of Inorganic Biochemistry, 1993, 49(1): 69–78

    Article  CAS  Google Scholar 

  7. Gibson I R, Bonfield W. Preparation and characterization of magnesium/carbonate co-substituted hydroxyapatite. Journal of Materials Science. Materials in Medicine, 2002, 13(7): 685–693

    Article  CAS  Google Scholar 

  8. Bigi A, Falini G, Foresti E, Gazzano M, Ripamonti A, Roveri N. Rietveld structure refinements of calcium hydroxyapatite containing magnesium. Acta Crystallographica. Section B, Structural Science, 1996, B52(1): 87–92

    Article  CAS  Google Scholar 

  9. Correia R N, Magalhanes M C F, Marques P A, Senos A M. Wet synthesis and characterization of modified hydroxyapatite powders. Journal of Materials Science. Materials in Medicine, 1996, 7: 501

    Article  CAS  Google Scholar 

  10. Fanovich M A, Castro M S, Porto Lopez J M. Analysis of the microstructural evolution in hydroxyapatite ceramics by electrical characterisation. Ceramics International, 1999, 25(6): 517–522

    Article  CAS  Google Scholar 

  11. Bigi A, Marchetti F, Ripamonti A, Roveri N, Foresti E. Magnesium and strontium interaction with carbonate-containing hydroxyapatite in aqueous medium. Journal of Inorganic Biochemistry, 1981, 15(4): 317–327

    Article  CAS  Google Scholar 

  12. Adzila S, Ramesh S, Spoyan I, Tan C Y, Hamdi M, Teng W D. Mechanochemical synthesis of magnesium doped hydroxyapatite: Powder characterization. Applied Mechanics and Materials, 2013, 372: 62–65

    Article  CAS  Google Scholar 

  13. Ryu H S, Hong K S, Lee J K, Kim D J, Lee J H, Chang B S, Lee D H, Lee C K, Chung S S. Magnesia-doped HA/beta-TCP ceramics and evaluation of their biocompatibility. Biomaterials, 2004, 25(3): 393–401

    Article  CAS  Google Scholar 

  14. Tautzenberger A, Kuvtun A, Ignatius A. Nanoparticles and their potential for application in bone. International Journal of Nanomedicine, 2012, 7: 4545–4557

    Article  CAS  Google Scholar 

  15. Cafiero L, Chianese A, Jachuck R. Precipitation of barium sulphate using a spinning disk crystallizer. 14th European Symposium on Ind. Crystallization, Cambridge 12–16 Sept. 1999

  16. Baffi G, Cafiero M L, Chianese A, Jachuck R J. Process intensification: Precipitation of barium sulphate using a spinning disc reactor (SDR). Industrial & Engineering Chemistry Research, 2002, 41(21): 5240–5246

    Article  Google Scholar 

  17. de Caprariis B, Di Rita M, Stoller M, Verdone N, Chianese A. Reaction-precipitation by a spinning disc reactor: Influence of hydrodynamics on nanoparticles production. Chemical Engineering Science, 2012, 76: 73–80

    Article  Google Scholar 

  18. Salimi M N, Bridson R H, Grover L M, Leeke G A. Effect of processing conditions on the formation of hydroxyapatite nanoparticles. Powder Technology, 2012, 218: 109–118

    Article  CAS  Google Scholar 

  19. Li J, Chen Y P, Yin Y, Yao F, Yao K. Modulation of nanohydroxyapatite size via formation on chitosan-gelatin network film in situ. Biomaterials, 2007, 28(5): 781–790

    Article  CAS  Google Scholar 

  20. Landi E, Tampieri A, Mattioli-Belmonte M, Celotti G, Sandri M, Gigante A, Fava P, Biagini G. Biomimetic Mg- and Mg,CO3-substituted hydroxyapatites: Synthesis characterization and in vitro behaviour. Journal of the European Ceramic Society, 2006, 26(13): 2593–2601

    Article  CAS  Google Scholar 

  21. Fadeev I V, Shvorneva L I, Barinov S M, Orlovskii V P. Synthesis and structure of magnesium-substituted hydroxyapatite. Inorganic Materials, 2003, 39(9): 947–950

    Article  CAS  Google Scholar 

  22. Silverstein R M, Webster F X. KeimLe D J. Spectrometric Identification of Organic Compounds. John Wiley & Sons, 2005, 82–108

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Chianese.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’ Intino, A.F., de Caprariis, B., Santarelli, M.L. et al. Best operating conditions to produce hydroxyapatite nanoparticles by means of a spinning disc reactor. Front. Chem. Sci. Eng. 8, 156–160 (2014). https://doi.org/10.1007/s11705-014-1427-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-014-1427-9

Keywords

Navigation