Skip to main content
Log in

Isolation, identification and primary application of bacteria from putrid alkaline silica sol

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The putrefaction of alkaline silica sol was investigated in this paper. The total colony numbers in three alkaline silica sol samples were 1.47×105, 1.25×104, and 9.45×104 cfu·mL−1, respectively. The salt- and alkali-tolerant strains were isolated and selected using nutrient agar medium at 2.5% salinity and pH 9.5. Basic morphological, physiological and biochemical tests were conducted to confirm the preliminary characterizations of the strains. Based on API 50 CH test and 16S rDNA gene sequence analysis, the isolated strains were finally identified as Exiguobacterium aurantiacum, Cyclobacteriaceae bacterium, Microbacterium sp., Acinetobacter sp., Stenotrophomonas maltophilia and Bacillus thuringiensis. The survivability of the strains under different conditions such as salinities, acidities and temperatures was also studied. Some suitable methods for degerming, such as product pipe steam sterilization and regular canister cleaning, were proposed. To explore the possibility of isolates in industrial application, their alkaline protease and amylase production abilities were preliminarily studied. Five strains produced alkaline protease, whereas two strains produced alkaline amylase. Thus, understanding of the putrefaction on alkaline silica sol would be beneficial for improving industrial production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Axelsson M. Mechanical tests on a new non-cementitious grout, silica sol: a laboratory study of the material characteristics. Tunnelling and Underground Space Technology, 2006, 21(5): 554–560

    Article  Google Scholar 

  2. Butrón C, Axelsson M, Gustafson G. Silica sol for rock grouting: laboratory testing of strength, fracture behavior and hydraulic conductivity. Tunnelling and Underground Space Technology, 2009, 24(6): 603–607

    Article  Google Scholar 

  3. Schwerin. Manufacture of chemically pure soluble silica acid. US Patent, 1132394, 1915-03-16

  4. Bird. Colloidal solutions of inorganic oxides. US 2244325, 1941-06-03

    Google Scholar 

  5. Yin X, Dai Y J. Properties, preparations and applications of silica sol. Chemical Propellants & Polymeric Materials, 2005, 3(6): 27–32

    Google Scholar 

  6. Zhang H N, Zhao Y, Akins D L. Synthesis and new structure shaping mechanism of silica particles formed at high pH. Journal of Solid State Chemistry, 2012, 194: 277–281

    Article  CAS  Google Scholar 

  7. Patwardhan S V, Clarson S J. Silicification and biosilicification: Part 5 — An investigation of the silica structures formed at weakly acidic pH and neutral pH as facilitated by cationically charged macromolecules. Materials Science and Engineering C, 2003, 23(4): 495–499

    Article  Google Scholar 

  8. van den Burg B. Extremophiles as a source for novel enzymes. Current Opinion in Microbiology, 2003, 6(3): 213–218

    Article  Google Scholar 

  9. Horikoshi K. Alkaliphiles: some applications of their products for biotechnology. Microbiology and Molecular Biology Reviews, 1999, 63(4): 735–750

    CAS  Google Scholar 

  10. Grant W D, Mwatha W E, Jones B E. Alkaliphiles: ecology, diversity and applications. FEMS Microbiology Letters, 1990, 75(2–3): 255–269

    Article  CAS  Google Scholar 

  11. Demirjian D C, Morís-Varas F, Cassidy C S. Enzymes from extremophiles. Current Opinion in Chemical Biology, 2001, 5(2): 144–151

    Article  CAS  Google Scholar 

  12. Meek C S, Lipman C B. The relation of the reactions of the salt concentration of the medium to nitrifying bacteria. Journal of General Physiology, 1922, 5(2): 195–204

    Article  CAS  Google Scholar 

  13. Vedder A. Bacillus alcalophilus nov. sp. benevens enkle ervaringen met sterk alcalische voedingsbodems. Antonie van Leevenhoek. Journal of Microbiology Serology, 1934, 1: 141–147

    Google Scholar 

  14. Horikoshi K. Production of alkaline enzymes by alkalophilic microorganisms. Part I. Alkaline protease produced by Bacillus No. 221. Agricultural and Biological Chemistry, 1971, 36(9): 1407–1414

    Article  Google Scholar 

  15. Yang Y X, Wu Q Y, Chen R S. Growth of algae in silica sol and the selection of algaecide. Journal of Nanjing University, 1989, 25(3): 92–97 (in Chinese)

    CAS  Google Scholar 

  16. Chen G Y, Chen J. Stability of acid silica sol and the microorganisms in silica sol. China Inorganic Salt (special issue), 2006, 25–28 (in Chinese)

    Google Scholar 

  17. Zhao B, He S J. Microbiology Experiment. China: Science press, 2003, 145–152 (in Chinese)

    Google Scholar 

  18. Rath A C, Carr C J, Graham B R. Characterization of metarhizium anisopliae strains by carbohydrate utilization (API 50 CH). Journal of Invertebrate Pathology, 1995, 65(2): 152–161

    Article  Google Scholar 

  19. Liu S N. Clone and expression of pediocin pedA gene from pediococcus acidilactici. Dissertation for the Doctoral Degree. Tianjin: Tianjin University, 2009, 29–30 (in Chinese)

    Google Scholar 

  20. Ma C C, Zheng D M. Manufacture and application of silica sols. Shandong Chemical Industry, 2008, 37(5): 26–29 (in Chinese)

    Google Scholar 

  21. Besbes M, Fakhfakh N, Benzina M. Characterization of silica gel prepared by using sol-gel process. Physics Procedia, 2009, 2(3): 1087–1095

    Article  CAS  Google Scholar 

  22. Tang Y L. An overview on manufacture methods of the silica sols. Zhejiang Chemical Industry, 2003, 34(5): 4–6 (in Chinese)

    Google Scholar 

  23. Kaide A, Saeki T. Development of preparation method to control silica sol-gel synthesis with rheological and morphological measurements. Advanced Powder Technology, 2014, 25(2): 773–779

    Article  CAS  Google Scholar 

  24. Jeswani H, Mukherji S. Batch studies with Exiguobacterium aurantiacum degrading structurally diverse organic compounds and its potential for treatment of biomass gasification wastewater. International Biodeterioration & Biodegradation, 2013, 80: 1–9

    Article  CAS  Google Scholar 

  25. Mohanty G, Mukherji S. Biodegradation rate of diesel range nalkanes by bacterial cultures Exiguobacterium aurantiacum and Burkholderia cepacia. International Biodeterioration & Biodegradation, 2008, 61(3): 240–250

    Article  CAS  Google Scholar 

  26. Kulshreshtha N M, Kumar A, Dhall P, Gupta S, Bisht G, Pasha S, Singh V P, Kumar R. Neutralization of alkaline industrial wastewaters using Exiguobacterium sp. International Biodeterioration & Biodegradation, 2010, 64(3): 191–196

    Article  CAS  Google Scholar 

  27. Jiang X, Xue Y, Wang A, Wang L, Zhang G, Zeng Q, Yu B, Ma Y. Efficient production of polymer-grade L-lactate by an alkaliphilic Exiguobacterium sp. strain under nonsterile open fermentation conditions. Bioresource Technology, 2013, 143: 665–668

    Article  CAS  Google Scholar 

  28. Nowicka D, Ginter-Kramarczyk D, Holderna-Odachowska A, Budnik I, Kaczorek E, Lukaszewski Z. Biodegradation of oxyethylated fatty alcohols by bacteria Microbacterium strain E19. Ecotoxicology and Environmental Safety, 2013, 91: 32–38

    Article  CAS  Google Scholar 

  29. Zhang D, Li W, Huang X, Qin W, Liu M. Removal of ammonium in surface water at low temperature by a newly isolated Microbacterium sp. strain SFA13. Bioresource Technology, 2013, 137: 147–152

    Article  CAS  Google Scholar 

  30. Koma D, Hasumi F, Yamamoto E, Ohta T, Chung S Y, Kubo M. Biodegradation of long-chain n-paraffins from waste oil of car engine by Acinetobacter sp. Journal of Bioscience and Bioengineering, 2001, 91(1): 94–96

    Article  CAS  Google Scholar 

  31. Liu Y J, Zhang A N, Wang X C. Biodegradation of phenol by using free and immobilized cells of Acinetobacter sp. XA05 and Sphingomonas sp. FG03. Biochemical Engineering Journal, 2009, 44(2–3): 187–192

    Article  CAS  Google Scholar 

  32. Göttsching A, Schmidt S. Productive degradation of the biocide benzylbenzoate by Acinetobacter sp. strain AG1 isolated from the River Elbe. Research in Microbiology, 2007, 158(3): 251–257

    Article  Google Scholar 

  33. Anil Kumar P, Aravind R, Francis K, Bhumika V, Ritika C, Priyashanth P, Srinivas T N R. Shivajiella indica gen. nov., sp. nov., a marine bacterium of the family “Cyclobacteriaceae” with nitrate reducing activity. Systematic and Applied Microbiology, 2012, 35(5): 320–325

    Article  CAS  Google Scholar 

  34. Kumar P A, Bhumika V, Ritika C, Bhaskar Y V, Priyashanth P, Aravind R, Bindu E, Srinivas T N R. Algoriphagus shivajiensis sp. nov., isolated from Cochin back water, India. Systematic and Applied Microbiology, 2013, 36(2): 106–111

    Article  CAS  Google Scholar 

  35. Gao S, Seo J S, Wang J, Keum Y S, Li J, Li Q X. Multiple degradation pathways of phenanthrene by Stenotrophomonas maltophilia C6. International Biodeterioration & Biodegradation, 2013, 79: 98–104

    Article  CAS  Google Scholar 

  36. Kanekar P P, Nilegaonkar S S, Sarnaik S S, Kelkar A S. Optimization of protease activity of alkaliphilic bacteria isolated from an alkaline lake in India. Bioresource Technology, 2002, 85(1): 87–93

    Article  CAS  Google Scholar 

  37. Kohli N, Sahoo D K. A novel organic solvent-stable alkaline protease from newly isolated Stenotrophomonas maltophilia: production, purification and characterization. Journal of Biotechnology, 2010, 150(1): S362

    Article  Google Scholar 

  38. Lee S H, Chung CW, Yu Y J, Rhee Y H. Effect of alkaline proteaseproducing Exiguobacterium sp. YS1 inoculation on the solubilization and bacterial community of waste activated sludge. Bioresource Technology, 2009, 100(20): 4597–4603

    Article  CAS  Google Scholar 

  39. Shi H, Cui Q, Deng H H, Zhou Z J, Han Y. Optimization of alkaline protease-producing Exiguobacterium aurantiacum on medium compositions and fermentation process. Science and Technology of Food Industry, 2012, 33(18): 205–213

    CAS  Google Scholar 

  40. Roberta C S, Thys R, Guzzon S, Cladera-Olivera F, Brandelli A. Optimization of protease production by Microbacterium sp. in feather meal using response surface methodology. Process Biochemistry, 2006, 41(1): 67–73

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhijiang Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, L., Han, Y., Yang, S. et al. Isolation, identification and primary application of bacteria from putrid alkaline silica sol. Front. Chem. Sci. Eng. 8, 330–339 (2014). https://doi.org/10.1007/s11705-014-1419-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-014-1419-9

Keywords

Navigation