Advertisement

Modification of polycarbonateurethane surface with poly (ethylene glycol) monoacrylate and phosphorylcholine glyceraldehyde for anti-platelet adhesion

  • Jing Yang
  • Juan Lv
  • Bin Gao
  • Li Zhang
  • Dazhi Yang
  • Changcan Shi
  • Jintang Guo
  • Wenzhong LiEmail author
  • Yakai FengEmail author
Research Article

Abstract

Poly(ethylene glycol) monoacrylate (PEGMA) is grafted onto polycarbonateurethane (PCU) surface via ultraviolet initiated photopolymerization. The hydroxyl groups of poly(PEGMA) on the surface react with one NCO group of isophorone diisocyanate (IPDI) and another NCO group of IPDI is then hydrolyzed to form amino terminal group, which is further grafted with phosphorylcholine glyceraldehyde to establish a biocompatible hydrophilic structure on the surface. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy confirm the successful grafting of both PEG and phosphorylcholine functional groups on the surface. The decrease of the water contact angle for the modified film is caused by synergic effect of PEG and phosphorylcholine, which both have the high hydrophilicity. Furthermore, the number of platelets adhered is relative low on the synergetically modified PCU film compared with the PCU film modified only by poly(PEGMA). Our synergic modification method using both PEG and phosphorylcholine may be applied in surface modification of blood-contacting biomaterials and some relevant devices.

Keywords

poly(ethylene glycol) monoacrylate phosphorylcholine polycarbonateurethane surface modification anti-platelet adhesion biomaterials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kushwaha M, Anderson J M, Bosworth C A, Andukuri A, MinorW P, Lancaster J R J Jr, Anderson P G, Brott B C, Jun H W. A nitric oxide releasing, self assembled peptide amphiphile matrix that mimics native endothelium for coating implantable cardiovascular devices. Biomaterials, 2010, 31(7): 1502–1508CrossRefGoogle Scholar
  2. 2.
    Okoshi T, Soldani G, Goddard M, Galletti PM. Very small diameter polyurethane vascular prostheses with rapid endothelialization for coronary artery bypass grafting. Journal of Thoracic and Cardiovascular Surgery, 1993, 105(5): 791–795Google Scholar
  3. 3.
    Isenberg B C, Williams C, Tranquillo R T. Small-diameter artificial arteries engineered in vitro. Circulation Research, 2006, 98(1): 25–35CrossRefGoogle Scholar
  4. 4.
    Wang H Y, Feng Y K, Behl M, Lendlein A, Zhao H Y, Xiao R F, Lu J, Zhang L, Guo J T. Hemocompatible PU/gelatin-heparin nanofibrous scaffolds as potential artificial blood vessels by bilayer electrospinning technique. Frontiers of Chemical Science and Engineering, 2011, 5(3): 392–400CrossRefGoogle Scholar
  5. 5.
    Feng Y K, Meng F R, Xiao R F, Zhao H Y, Guo J T. Electrospinning of polycarbonate urethane biomaterials. Frontiers of Chemical Science and Engineering, 2011, 5(1): 11–18CrossRefGoogle Scholar
  6. 6.
    Feng Y K, Xue Y, Guo J T, Cheng L, Jiao L C, Zhang L, Yue J L. Synthesis and characterization of poly(carbonate urethane) networks with shape-memory properties. Journal of Applied Polymer Science, 2009, 112(1): 473–478CrossRefGoogle Scholar
  7. 7.
    Behl M, Ridder U, Feng Y K, Kelch S, Lendlein A. Shape-memory capability of binary multiblock copolymer blends with hard and switching domains provided by different components. Soft Matter, 2009, 5(3): 676–684CrossRefGoogle Scholar
  8. 8.
    Guo J T, Yin JW, Feng Y K. Synthesis and characterization of HDI/MDI-polycarbonate urethanes. Transaction of Tianjin University, 2010, 16(5): 317–321CrossRefGoogle Scholar
  9. 9.
    Hsu S H, Kao Y C, Lin Z C. Enhanced biocompatibility in biostable poly(carbonate)urethane. Macromolecular Bioscience, 2004, 19, 4 (4): 464–470CrossRefGoogle Scholar
  10. 10.
    Seifalian A M, Salacinski H J, Tiwari A, Edwards A, Bowald S, Hamilton G. In vivo biostability of a poly(carbonate-urea)urethane graft. Biomaterials, 2003, 24(14): 2549–2557CrossRefGoogle Scholar
  11. 11.
    Chandy T, Van H J, Nettekoven W, Johnson J. Long-term in vitro stability assessment of polycarbonate urethane micro catheters: resistance to oxidation and stress cracking. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2009, 89(2): 314–324CrossRefGoogle Scholar
  12. 12.
    John B J, Furukawa M. Enhanced mechanical properties of polyamide 6 fibers coated with a polyurethane thin film. Polymer Engineering and Science, 2009, 49(10): 1970–1978CrossRefGoogle Scholar
  13. 13.
    Ajili S H, Ebrahimi N G, Khorasani M T. Study on thermoplastic polyurethane/polypropylene (TPU/PP) blend as a blood bag material. Journal of Applied Polymer Science, 2003, 89(9): 2496–2501CrossRefGoogle Scholar
  14. 14.
    Feng Y K, Zhang S F, Wang H Y, Zhao H Y, Lu J, Guo J T, Behl M, Lendlein A. Drug release from biodegradable polyesterurethanes with shape-memory effect. Journal of Controlled Release, 2011, 152(Suppl 1): e20–e21CrossRefGoogle Scholar
  15. 15.
    Wei Y, Ji Y, Xiao L L, Lin Q K, Xu J P, Ren K F, Ji J. Surface engineering of cardiovascular stent with endothelial cell selectivity for in vivo re-endothelialisation. Biomaterials, 2013, 34(11): 2588–2599CrossRefGoogle Scholar
  16. 16.
    Guo J T, Feng Y K, Ye Y Q, Zhao H Y. Construction of hemocompatible polycarbonate urethane with sulfoammonium zwitterionic polyethylene glycol. Journal of Applied Polymer Science, 2011, 122(2): 1084–1091CrossRefGoogle Scholar
  17. 17.
    Wu Z Q, Chen H, Huang H, Zhao T L, Liu X L, Li D, Yu Q. A facile approach to modify polyurethane surfaces for biomaterial applications. Macromolecular Bioscience, 2009, 9(12): 1165–1168CrossRefGoogle Scholar
  18. 18.
    Li J, Lin F, Li L D, Li J, Liu S. Surface engineering of poly(ethylene terephthalate) for durable hemocompatibility via a surface interpenetrating network technique. Macromolecular Chemistry and Physics, 2012, 213(20): 2120–2129CrossRefGoogle Scholar
  19. 19.
    Mel A D, Jell G, Stevens M M, Seifalian A M. Biofunctionalization of biomaterials for accelerated in situ endothelialization: A review. Biomacromolecules, 2008, 9(11): 2969–2979CrossRefGoogle Scholar
  20. 20.
    Zhu H G, Ji J, Shen J C. Surface engineering of poly(DL-lactic acid) by entrapment of biomacromolecules. Macromolecular Rapid Communications, 2002, 23(14): 819–823CrossRefGoogle Scholar
  21. 21.
    Khan M, Feng Y K, Yang D Z, Zhou W, Tian H, Han Y, Zhang L, Yuan W J, Zhang J, Guo J T, Zhang W C. Biomimetic design of amphiphilic polycations and surface grafting onto polycarbonate urethane film as effective antibacterial agents with controlled hemocompatibility. Journal of Polymer Science. Part A, Polymer Chemistry, 2013, 51(15): 3166–3176CrossRefGoogle Scholar
  22. 22.
    Gonçalvesa S, Leirósa A, Kootenb T V, Douradoa F, Rodrigues L R. Physicochemical and biological evaluation of poly(ethylene glycol) methacrylate grafted onto poly(dimethyl siloxane) surfaces for prosthetic devices. Colloids and Surfaces. B, Biointerfaces, 2013, 109(1): 228–235CrossRefGoogle Scholar
  23. 23.
    Ji J, Feng L X, Qiu Y X, Yu X J. Stearyl poly(ethylene oxide) grafted surface for preferential adsorption of part 2. The effect of the molecule mobility onto protein adsorption. Polymer, 2000, 41(10): 3713–3718CrossRefGoogle Scholar
  24. 24.
    Seongbong J, Kinam P. Surface modification using silanated poly (ethylene glycol)s. Biomaterials, 2000, 21(6): 605–616CrossRefGoogle Scholar
  25. 25.
    Wang H Y, Feng Y K, Fang Z C, Yuan W J, Khan M. Coelectrospun blends of PU and PEG as potential biocompatible scaffolds for small-diameter vascular tissue engineering. Materials Science and Engineering C, 2012, 32(8): 2306–2315CrossRefGoogle Scholar
  26. 26.
    Zhao H Y, Feng Y K, Guo J T. Grafting of poly(ethylene glycol) monoacrylate onto polycarbonateurethane surfaces by ultraviolet radiation grafting polymerization to control hydrophilicity. Journal of Applied Polymer Science, 2011, 119(6): 3717–3727CrossRefGoogle Scholar
  27. 27.
    Yuan W J, Feng Y K, Wang H Y, Yang D Z, An B, Zhang W C, Khan M, Guo J T. Hemocompatible surface of electrospun nanofibrous scaffolds by ATRP modification. Materials Science and Engineering: C, 2013, 33(7): 3644–3651CrossRefGoogle Scholar
  28. 28.
    Perttua E K, Szoka F C. Zwitterionic sulfobetaine lipids that form vesicles with salt-dependent thermotropic properties. Chemical Communications, 2011, 47(47): 12613–12615CrossRefGoogle Scholar
  29. 29.
    Feng Y K, Yang D Z, Behl M, Lendlein A, Zhao H Y, Guo J T. The influence of zwitterionic phospholipid brushes grafted via UV-initiated or SI-ATR polymerization on the hemocompatibility of polycarbonateurethane. Macromolecular Symposia, 2011, 309–310(1): 6–15CrossRefGoogle Scholar
  30. 30.
    Feng Y K, Yang D Z, Zhao H Y, Guo J T, Chen Q L, Liu J S. Grafting sulfoammonium zwitterionic brushes onto polycarbonateurethane surface to improve hemocompatibility. Advanced Materials Research, 2011, 306–307: 1631–1634CrossRefGoogle Scholar
  31. 31.
    Shih Y J, Lai C J, Kung H H, Jiang S Y. Blood-inert surfaces via ion-pair anchoring of zwitterionic copolymer brushes in human whole blood. Advanced Functional Materials, 2013, 23(9): 1100–1110CrossRefGoogle Scholar
  32. 32.
    Shih Y J, Chang Y. Tunable blood compatibility of polysulfobetaine from controllable molecular-weight dependence of zwitterionic nonfouling nature in aqueous solution. Langmuir, 2010, 26(22): 17286–17294CrossRefGoogle Scholar
  33. 33.
    Wang M, Yuan J, Huang X, Cai X, Li L, Shen J. Grafting of carboxybetaine brush onto cellulose membranes via surfaceinitiated ARGET-ATRP for improving blood compatibility. Colloids and Surfaces. B, Biointerfaces, 2013, 103: 52–58CrossRefGoogle Scholar
  34. 34.
    Liu G Y, Hu X F, Chen C J, Ji J. Construct biomimetic giant vesicles via self-assembly of poly(2-methacryloyloxyethyl phosphorylcholine)-block-poly (D,L- lactide). Journal of Applied Polymer Science, 2010, 118(6): 3197–3202CrossRefGoogle Scholar
  35. 35.
    Gao B, Feng Y K, Lu J, Zhang L, Zhao M, Shi C C, Khan M, Guo J T. Grafting of phosphorylcholine functional groups on polycarbonate urethane surface for resisting platelet adhesion. Materials Science and Engineering C, 2013, 33(5): 2871–2878CrossRefGoogle Scholar
  36. 36.
    Lu J, Feng Y K, Gao B, Guo J T. Preparation and characterization of phosphorylcholine glyceraldehyde grafted polycarbonateurethane films. Journal of Polymer Research, 2012, 19(9): 9959–9969CrossRefGoogle Scholar
  37. 37.
    Gao W, Feng Y K, Lu J, Khan M, Guo J T. Biomimetic surface modification of polycarbonateurethane film via phosphorylcholinegraft for resisting platelet adhesion. Macromolecular Research, 2012, 20(10): 1063–1069CrossRefGoogle Scholar
  38. 38.
    Tan M Q, Feng Y K, Wang H Y, Zhang L, Khan M, Guo J T, Chen Q L, Liu J S. Immobilized bioactive agents onto polyurethane surface with heparin and phosphorylcholine group. Macromolecular Research, 2013, 21(5): 541–549CrossRefGoogle Scholar
  39. 39.
    Lu J, Feng Y K, Gao B, Guo J T. Grafting of a novel phosphorylcholine-containing vinyl monomer onto polycarbonateurethane surfaces by ultraviolet radiation grafting polymerization. Macromolecular Research, 2012, 20(7): 693–702CrossRefGoogle Scholar
  40. 40.
    Albrecht W, Seifert B, Weigel T, Schossig M, Holländer A, Groth T, Hilke R. Amination of poly(ether imide) membranes using di- and multivalent amines. Macromolecular Chemistry and Physics, 2003, 204(3): 510–521CrossRefGoogle Scholar
  41. 41.
    Jiang H, Wang X B, Li C Y, Li J S, Xu F J, Mao C, Yang WT, Shen J. Improvement of hemocompatibility of polycaprolactone film surfaces with zwitterionic polymer brushes. Langmuir, 2011, 27(18): 11575–11581CrossRefGoogle Scholar
  42. 42.
    Li D, Chen H, McClung W G, Brash J L. Lysine-PEG-modified polyurethane as a fibrinolytic surface: Effect of PEG chain length on protein interactions, platelet interactions and clotlysis. Acta Biomaterialia, 2009, 5(6): 1864–1871CrossRefGoogle Scholar
  43. 43.
    Feng Y K, Zhao H Y, Behl M, Lendlein A, Guo J T, Yang D Z. Grafting of poly(ethylene glycol) monoacrylates on polycarbonateurethane by UV initiated polymerization for improving hemocompatibility. Journal of Materials Science. Materials in Medicine, 2013, 24(1): 61–70CrossRefGoogle Scholar
  44. 44.
    Lomölder R, Plogmann F, Speier P. Selectivity of isophorone diisocyanate in the urethane reaction influence of temperature, catalysis, and reaction partners. Journal of Coatings Technology, 1997, 69(868): 51–57CrossRefGoogle Scholar
  45. 45.
    Miyazawa K, Winnik F M, Miyazawa K, Winnik F O M. Solution properties of phosphorylcholine-based hydrophobically modified polybetaines in water and mixed solvents. Macromolecules, 2002, 35(25): 9536–9544CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Jing Yang
    • 1
  • Juan Lv
    • 1
  • Bin Gao
    • 1
  • Li Zhang
    • 1
  • Dazhi Yang
    • 1
  • Changcan Shi
    • 1
  • Jintang Guo
    • 1
    • 2
  • Wenzhong Li
    • 4
    Email author
  • Yakai Feng
    • 1
    • 2
    • 3
    Email author
  1. 1.School of Chemical Engineering and TechnologyTianjin UniversityTianjinChina
  2. 2.Joint Laboratory for Biomaterials and Regenerative MedicineTianjin University-Helmholtz-Zentrum GeesthachtTianjinChina
  3. 3.Key Laboratory of Systems Bioengineering, Ministry of EducationTianjin UniversityTianjinChina
  4. 4.Department of Cardiac Surgery, Reference & Translation Center for Cardiac Stem Cell TherapyUniversity of RostockRostockGermany

Personalised recommendations