Skip to main content

Advertisement

Log in

Application of membrane separation technology in postcombustion carbon dioxide capture process

  • Review Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Membrane separation technology is a possible breakthrough in post-combustion carbon dioxide capture process. This review first focuses on the requirements for CO2 separation membrane, and then outlines the existing competitive materials, promising preparation methods and processes to achieve desirable CO2 selectivity and permeability. A particular emphasis is addressed on polyimides, poly (ethylene oxide), mixed-matrix membrane, thermally-rearranged polymer, fixed site carrier membrane, ionic liquid membrane and electrodialysis process. The advantages and drawbacks of each of materials and methods are discussed. Research threads and methodology of CO2 separation membrane and the key issue in this area are concluded

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rubin E S, Mantripragada H, Marks A, Versteeg P, Kitchin J. The outlook for improved carbon capture technology. Progress in Energy and Combustion Science, 2012, 38(5): 630–671

    Article  CAS  Google Scholar 

  2. Herzog H J. Peer reviewed: What future for carbon capture and sequestration? Environmental Science & Technology, 2001, 35(7): 148–153

    Article  Google Scholar 

  3. Davison J, Thambimuthu K. Technologies for capture of carbon dioxide. In: Proceedings of the Seventh Greenhouse Gas Technology Conference, Vancouver, Canada, International Energy Association (IEA), Greenhouse Gas R&D Progamme. 2004, 3–13

    Google Scholar 

  4. Steeneveldt R, Berger B, Torp T. CO2 Capture and storage: Closing the knowing-doing gap. Chemical Engineering Research & Design, 2006, 84(9): 739–763

    Article  CAS  Google Scholar 

  5. Duke M C, Ladewig B, Smart S, Rudolph V, Diniz da Costa J C. Assessment of postcombustion carbon capture technologies for power generation. Frontiers of Chemical Engineering in China, 2009, 4(2): 184–195

    Article  Google Scholar 

  6. Oexmann J, Kather A. Minimising the regeneration heat duty of post-combustion CO2 capture by wet chemical absorption: The misguided focus on low heat of absorption solvents. International Journal of Greenhouse Gas Control, 2010, 4(1): 36–43

    Article  CAS  Google Scholar 

  7. Favre E. Membrane processes and postcombustion carbon dioxide capture: Challenges and prospects. Chemical Engineering Journal, 2011, 171(3): 782–793

    Article  CAS  Google Scholar 

  8. Granite E J, Pennline HW. Photochemical removal of mercury from flue gas. Industrial & Engineering Chemistry Research, 2002, 41(22): 5470–5476

    Article  CAS  Google Scholar 

  9. Powell C E, Qiao G G. Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases. Journal of Membrane Science, 2006, 279(1–2): 1–49

    Article  CAS  Google Scholar 

  10. Favre E. Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption? Journal of Membrane Science, 2007, 294(1–2): 50–59

    Article  CAS  Google Scholar 

  11. Brunetti A, Scura F, Barbieri G, Drioli E. Membrane technologies for CO2 separation. Journal of Membrane Science, 2010, 359(1–2): 115–125

    Article  CAS  Google Scholar 

  12. Joly C, Goizet S, Schrotter J C, Sanchez J, Escoubes M. Sol-gel polyimide-silica composite membrane: gas transport properties. Journal of Membrane Science, 1997, 130(1–2): 63–74

    Article  CAS  Google Scholar 

  13. Robeson L M. The upper bound revisited. Journal of Membrane Science, 2008, 320(1–2): 390–400

    Article  CAS  Google Scholar 

  14. Cecopieri-Gómez M L, Palacios-Alquisira J, Domínguez J M. On the limits of gas separation in CO2/CH4, N2/CH4 and CO2/N2 binary mixtures using polyimide membranes. Journal of Membrane Science, 2007, 293(1–2): 53–65

    Article  Google Scholar 

  15. Du N Y, Park H B, Dal-Cin M M, Guiver M D. Advances in high permeability polymeric membrane materials for CO2 separations. Energy & Environmental Science, 2012, 5(6): 7306–7322

    Article  CAS  Google Scholar 

  16. Hu L, Xu X L, Coleman M R. Impact of H+ ion beam irradiation on Matrimid (R). II. Evolution in gas transport properties. Journal of Applied Polymer Science, 2007, 103(3): 1670–1680

    Article  CAS  Google Scholar 

  17. Stern S A. Polymers for gas separations—the next decade. Journal of Membrane Science, 1994, 94(1): 1–65

    Google Scholar 

  18. Hirayama Y, Kase Y, Tanihara R, Sumiyama Y, Kusuki Y, Haraya K. Permeation properties to CO2 and N2 of poly(ethylene oxide)-containing and crosslinked polymer films. Journal of Membrane Science, 1999, 160(1): 87–99

    Article  CAS  Google Scholar 

  19. Potreck J, Nijmeijer K, Kosinski T, Wessling M. Mixed water vapor/gas transport through the rubbery polymer PEBAX (R) 1074. Journal of Membrane Science, 2009, 338(1–2): 11–16

    Article  CAS  Google Scholar 

  20. Hashemifard S A, Ismail A F, Matsuura T. Effects of montmorillonite nano-clay fillers on PEI mixed matrix membrane for CO2 removal. Chemical Engineering Journal, 2011, 170(1): 316–325

    Article  CAS  Google Scholar 

  21. Husain S, Koros W J. Mixed matrix hollow fiber membranes made with modified HSSZ-13 zeolite in polyetherimide polymer matrix for gas separation. Journal of Membrane Science, 2007, 288(1–2): 195–207

    Article  CAS  Google Scholar 

  22. Li J R, Sculley J, Zhou H C. Metal-organic frameworks for separations. Chemical Reviews, 2012, 112(2): 869–932

    Article  CAS  Google Scholar 

  23. D’Alessandro D M, Smit B, Long J R. Carbon dioxide capture: Prospects for new materials. Angewandte Chemie International Edition in English, 2010, 49(35): 6058–6082

    Article  Google Scholar 

  24. Dai Y, Johnson J R, Karvan O, Sholl D S, Koros WJ. Ultem®/ZIF-8 mixed matrix hollow fiber membranes for CO2/N2 separations. Journal of Membrane Science, 2012, 401–402: 76–82

    Article  Google Scholar 

  25. Brown A J, Johnson J R, Lydon M E, Koros W J, Jones C W, Nair S. Continuous polycrystalline zeolitic imidazolate framework-90 membranes on polymeric hollow fibers. Angewandte Chemie International Edition, 2012, 51(42): 10615–10618

    Article  CAS  Google Scholar 

  26. Park H B, Jung C H, Lee Y M, Hill A J, Pas S J, Mudie S T, van Wagner E, Freeman B D, Cookson D J. Polymers with cavities tuned for fast selective transport of small molecules and ions. Science, 2007, 318(5848): 254–258

    Article  CAS  Google Scholar 

  27. Kim S, Han S H, Lee Y M. Thermally rearranged (TR) polybenzoxazole hollow fiber membranes for CO2 capture. Journal of Membrane Science, 2012, 403: 169–178

    Article  Google Scholar 

  28. Park H B, Han S H, Jung C H, Lee Y M, Hill A J. Thermally rearranged (TR) polymer membranes for CO2 separation. Journal of Membrane Science, 2010, 359(1–2): 11–24

    Article  CAS  Google Scholar 

  29. Huang J, Zou J, Ho W S W. Carbon dioxide capture using a CO2-selective facilitated transport membrane. Industrial & Engineering Chemistry Research, 2008, 47(4): 1261–1267

    Article  CAS  Google Scholar 

  30. Matsuyama H, Terada A, Nakagawara T, Kitamura Y, Teramoto M. Facilitated transport of CO2 through polyethylenimine/poly(vinyl alcohol) blend membrane. Journal of Membrane Science, 1999, 163(2): 221–227

    Article  CAS  Google Scholar 

  31. Kim T J, Li B A, Hagg M B. Novel fixed-site-carrier polyvinylamine membrane for carbon dioxide capture. Journal of Polymer Science. Part B, Polymer Physics, 2004, 42(23): 4326–4336

    Article  CAS  Google Scholar 

  32. Wang M, Yang D, Wang Z, Wang J, Wang S. Effects of pressure and temperature on fixed-site carrier membrane for CO2 separation from natural gas. Frontiers of Chemical Engineering in China, 2009, 4(2): 127–132

    Article  Google Scholar 

  33. Andrew Lee S, Stevens G W, Kentish S E. Facilitated transport behavior of humidified gases through thin-film composite polyamide membranes for carbon dioxide capture. Journal of Membrane Science, 2013, 429(0): 349–354

    Article  CAS  Google Scholar 

  34. Lozano L J, Godinez C, de los Rios A P, Hernandez-Fernandez F J, Sanchez-Segado S, Alguacil F J. Recent advances in supported ionic liquid membrane technology. Journal of Membrane Science, 2011, 376(1–2): 1–14

    Article  CAS  Google Scholar 

  35. Zhao W, He G, Nie F, Zhang L, Feng H, Liu H. Membrane liquid loss mechanism of supported ionic liquid membrane for gas separation. Journal of Membrane Science, 2012, 411–412: 73–80

    Article  Google Scholar 

  36. Eisaman M D, Alvarado L, Larner D, Wang P, Garg B, Littau K A. CO2 separation using bipolar membrane electrodialysis. Energy & Environmental Science, 2011, 4(4): 1319–1328

    Article  CAS  Google Scholar 

  37. Eisaman M D, Alvarado L, Larner D, Wang P, Littau K A. CO2 desorption using high-pressure bipolar membrane electrodialysis. Energy & Environmental Science, 2011, 4(10): 4031–4037

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaohong He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, M., Jiang, X. & He, G. Application of membrane separation technology in postcombustion carbon dioxide capture process. Front. Chem. Sci. Eng. 8, 233–239 (2014). https://doi.org/10.1007/s11705-014-1408-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-014-1408-z

Keywords

Navigation