Skip to main content
Log in

Microwave assisted synthesis of poly(2-hydroxyethylmethacrylate) grafted agar (Ag-g-P(HEMA)) and its application as a flocculant for wastewater treatment

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Poly(2-hydroxyethylmethacrylate) chains were grafted onto the backbone of agar using a microwave assisted method involving a combination of microwave irradiation and ceric ammonium nitrate to initiate the grafting reaction. The synthesized graft copolymers were characterized by intrinsic viscosity measurements, Fourier transform infrared spectroscopy, elemental analysis (C, H, N, O and S) and scanning electron microscopy. Ag-g-P (HEMA)-2 showed a much higher flocculation efficacy than agar. The optimized dosage of flocculation for Ag-g-P (HEMA)-2 in the wastewater was found to be 0.75 ppm. Compared to agar, Ag-g-P(HEMA)-2 was found to considerably reduce the pollutant load in the wastewater.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wuttisela K, Panijpan B, Triampo W, Triampo D. Optimization of the water absorption by crosslinked agar-g-poly(acrylic acid). Polymer (Korea), 2008, 32(6): 537–543

    CAS  Google Scholar 

  2. Labropoulos K C, Niesz D E, Danforth S C, Kevrekidis P G. Dynamic rheology of agar gels: Theory and experiments. Part I: Development of a rheological model. Carbohydrate Polymers, 2002, 50(4): 393–406

    Article  CAS  Google Scholar 

  3. Armisen R, Galatas F. Properties and uses of agar, production and utilization of products from commercial seaweeds (Ch. 1). Fisheries and Aquaculture Organization, 1987, 288: 1–57

    Google Scholar 

  4. Odian G. Principles of polymerization (3rd edition). New York: John wiley & sons, 1991, 2: 17–19

    Google Scholar 

  5. Gowariker V R, Viswanathan N V, Sreedhar J. Polymer Science. New Delhi: New age International (p) Ltd, 1986, 91–92

    Google Scholar 

  6. Bhattacharya A, Rawlins J W, Ray P. Polymer Grafting and Crosslinking. New Jersey: John Wiley & Sons, 2008, 1–329

    Book  Google Scholar 

  7. Da Silva D A, de Paula R C M, Feitosa J P A. Graft copolymerization of acrylamide onto cashew gum. European Polymer Journal, 2007, 43(6): 2620–2629

    Article  Google Scholar 

  8. Mostafa K A. Graft polymerization of acrylic acid onto starch using potassium permanganate acid (redox system). Journal of Applied Polymer Science, 1995, 56(2): 263–269

    Article  CAS  Google Scholar 

  9. Rani U G, Mishra S, Sen G, Jha U. Polyacrylamide grafted agar: Synthesis and applications of conventional and microwave assisted technique. Carbohydrate Polymers, 2012, 90(2): 784–791

    Article  CAS  Google Scholar 

  10. Bharti S, Mishra S, Sen G. Ceric ion initiated synthesis of polyacrylamide grafted oatmeal: its application as flocculant for waste water treatment. Carbohydrate Polymers, 2013, 93(2): 528–536

    Article  CAS  Google Scholar 

  11. Gupta K C, Sahoo S. Graft copolymerization of acrylonitrile and ethylmethacrylate comonomers on cellulose using ceric ions. Biomacromolecules, 2001, 2(1): 239–247

    Article  CAS  Google Scholar 

  12. Sen G, Pal S. Polyacrylamide grafted carboxymethyltamarind (CMT-g-PAM): development and application of a novel polymeric flocculant. Macromolecular Symposia, 2009, 277(1): 100–111

    Article  CAS  Google Scholar 

  13. Huang R Y M, Immergut B, Immergu E H, Rapson W H. Grafting vinyl polymers onto cellulose by high energy radiation. I. High energy radiation-induced graft copolymerization of styrene onto cellulose. Journal of Polymer Science: Part A, General Papers, 2003, 1(4): 1257–1270

    Article  Google Scholar 

  14. Hebeish A, Mehta P C. Grafting of acrylonitrile to different cellulosic materials by high-energy radiation. Textile Research Journal, 1968, 38(10): 1070–1071

    Article  CAS  Google Scholar 

  15. Geresh S, Gdalevsky G Y, Gilboa I, Voorspoels J, Remon J P, Kost J. Bioadhesive grafted cellulose copolymers as platforms for per oral drug delivery: a study of theophylline release. Journal of Controlled Release, 2004, 94(2–3): 391–399

    Article  CAS  Google Scholar 

  16. Shiraishi N, Williams J L, Stannett V. The radiation grafting of vinyl monomers to cotton fabrics. I. Methacrylic acid to terry cloth towelling. Radiation Physics and Chemistry, 1982, 19: 73–78

    CAS  Google Scholar 

  17. Sharma R K, Misra B N. Grafting onto wool. Polymer Bulletin, 1981, 6(3–4): 183–188

    Article  CAS  Google Scholar 

  18. Carenza M. Recent achievements in the use of radiation polymerization and grafting for biomedical applications. Radiation Physics and Chemistry, 1992, 39: 485–493

    CAS  Google Scholar 

  19. Wang J P, Chen Y Z, Zhang S J, Yu H Q. A chitosan-based flocculant prepared with gamma-irradiation-induced grafting. Bioresource Technology, 2008, 99(9): 3397–3402

    Article  CAS  Google Scholar 

  20. Barsbay M, Guven O, Davis T P, Kowollik C B, Barner L. RAFTmediated polymerization and grafting of sodium 4-styrenesulfonate from cellulose initiated via γ-radiation. Polymer, 2009, 50(4): 973–982

    Article  CAS  Google Scholar 

  21. Deng J, Wang L, Liu L, Yang W. Developments and new applications of UV-induced surface graft polymerizations. Progress in Polymer Science, 2009, 34(2): 156–193

    Article  CAS  Google Scholar 

  22. Wang J, Liang G, Zhao W, Lu S, Zhang Z. Studies on surface modification of UHMWPE fibers via UV initiated grafting. Applied Surface Science, 2006, 253(2): 668–673

    Article  CAS  Google Scholar 

  23. Hua H, Li N, Wu L, Zhong H, Wu G, Yuan Z, Lin X, Tang L. Antifouling ultrafiltration membrane prepared from polysulfone-graftmethyl acrylate copolymers by UV-induced grafting method. Journal of Environmental Sciences (China), 2008, 20(5): 565–570

    Article  CAS  Google Scholar 

  24. Shanmugharaj A M, Kim J K, Ryu S H. Modification of rubber surface by UV surface grafting. Applied Surface Science, 2006, 252(16): 5714–5722

    Article  CAS  Google Scholar 

  25. Zhu Z, Kelley M J. Grafting onto poly(ethylene terephthalate) driven by 172 nm UV light. Applied Surface Science, 2005, 252(2): 303–310

    Article  CAS  Google Scholar 

  26. Deng J, Yang W. Grafting copolymerization of styrene and maleicanhydride binary monomer systems induced by UV irradiation. European Polymer Journal, 2005, 41(11): 2685–2692

    Article  CAS  Google Scholar 

  27. Thaker M D, Trivedi H C. Ultraviolet-radiation-induced graft copolymerization of methyl acrylate onto the sodium salt of partially carboxymethylated guar gum. Journal of Applied Polymer Science, 2005, 97(5): 1977–1986

    Article  CAS  Google Scholar 

  28. Chen C, Li X, Li Z. Graft copolymerization of acrylamide onto the UV-Ray irradiated film of polyester-polyether. Chinese Journal of Polymer Science, 1988, 6: 1

    CAS  Google Scholar 

  29. Mishra S, Rani G U, Sen G. Microwave initiated synthesis and application of poly acrylic acid grafted carboxymethylcellulose. Carbohydrate Polymers, 2012, 87(3): 2255–2262

    Article  CAS  Google Scholar 

  30. Mishra S, Sen G. Microwave initiated synthesis of polymethylmethacrylate grafted guar (GG-g-PMMA), characterizations and application. International Journal of Biological Macromolecules, 2011, 48(4): 688–694

    Article  CAS  Google Scholar 

  31. Sen G, Mishra S, Jha U, Pal S. Microwave initiated synthesis of polyacrylamide grafted guar gum (GG-g-PAM)-characterizations and application as matrix for controlled release of 5-amino salicylic acid. International Journal of Biological Macromolecules, 2010, 47(2): 164–170

    Article  CAS  Google Scholar 

  32. Sen G, Kumar R, Ghosh S, Pal S. A novel polymeric flocculant based on polyacrylamide grafted carboxymethylstarch. Carbohydrate Polymers, 2009, 77(4): 822–831

    Article  CAS  Google Scholar 

  33. Sen G, Singh R P, Sagar P. Microwave-initiated synthesis of polyacrylamide grafted sodium alginate: synthesis and characterization. Journal of Applied Polymer Science, 2010, 115(1): 63–71

    Article  CAS  Google Scholar 

  34. Sen G, Mishra S, Rani G U, Rani P, Prasad R. Microwave initiated synthesis of polyacrylamide grafted Psyllium and its application as a flocculent. International Journal of Biological Macromolecules, 2012, 50(2): 369–375

    Article  CAS  Google Scholar 

  35. Sen G, Pal S. Microwave initiated synthesis of polyacrylamide grafted carboxymethylstarch (CMS-g-PAM): Application as a novel matrix for sustained drug release. International Journal of Biological Macromolecules, 2009, 45(1): 48–55

    Article  CAS  Google Scholar 

  36. Mishra S, Sen G, Rani G U, Sinha S. Microwave assisted synthesis of polyacrylamide grafted agar (Ag-g-PAM) and its application as flocculant for wastewater treatment. International Journal of Biological Macromolecules, 2011, 49(4): 591–598

    Article  CAS  Google Scholar 

  37. Mishra S, Mukul A, Sen G, Jha U. Microwave assisted synthesis of polyacrylamide grafted starch (St-g-PAM) and its applicability as flocculant for water treatment. International Journal of Biological Macromolecules, 2011, 48(1): 106–111

    Article  CAS  Google Scholar 

  38. Rani P, Sen G, Mishra S, Jha U. Microwave assisted synthesis of polyacrylamide grafted gum ghatti and its application as flocculant. Carbohydrate Polymers, 2012, 89(1): 275–281

    Article  CAS  Google Scholar 

  39. Rani P, Mishra S, Sen G. Microwave based synthesis of polymethyl methacrylate grafted alginate: its application as flocculant. Carbohydrate Polymers, 2013, 91(2): 686–692

    Article  CAS  Google Scholar 

  40. Sen G, Sharon A, Pal S. Grafted polysaccharides: smart materials of the future, their synthesis and applications (Chapter 05). USA: Wiley-Scrivener, 2011, 99–128

    Google Scholar 

  41. Tripathy T, Ranjan De B. Flocculation: a new way to treat the waste water. Journal of Physiological Sciences; JPS, 2006, 10: 93–127

    Google Scholar 

  42. Mc Dowall D J, Gupta B S, Stannnett V T. Grafting of vinyl monomers to cellulose by ceric ion initiation. Progress in Polymer Science, 1984, 10(1): 1–50

    Article  CAS  Google Scholar 

  43. Singh J, Yadav L D S. Organic Synthesis. A pragati Prakadshan, 2008, 1–652

    Google Scholar 

  44. Odian G. Principles of Polymerization (4th edition). New York: John Wiley & Sons, 2004, 1–832

    Book  Google Scholar 

  45. Nayak P L, Lenka S. Redox polymerization initiated by metal ions. Journal of macromolecule Science, Part C: Polymer review, 1980, 19(1): 83–134

    Article  Google Scholar 

  46. Misra G S, Bajpai U D. Redox polymerization. Progress in Polymer Science, 1982, 8(1–2): 61–131

    Article  CAS  Google Scholar 

  47. Temel O, Ismail C. Synthesis of block copolymers via redox polymerization process: a critical review. Iranian Polymer Journal, 2007, 16(8): 561–581

    Google Scholar 

  48. Ruehrwein R A, Ward DW. Mechanism of clay aggregation by poly electrolytes. Journal of Soil Science, 1952, 73(6): 485–492

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Usha Rani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sen, G., Rani, G.U. & Mishra, S. Microwave assisted synthesis of poly(2-hydroxyethylmethacrylate) grafted agar (Ag-g-P(HEMA)) and its application as a flocculant for wastewater treatment. Front. Chem. Sci. Eng. 7, 312–321 (2013). https://doi.org/10.1007/s11705-013-1344-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-013-1344-3

Keywords

Navigation