Frontiers of Chemical Science and Engineering

, Volume 7, Issue 3, pp 279–288 | Cite as

Light olefins synthesis from C1-C2 paraffins via oxychlorination processes

  • Anton Shalygin
  • Evgenii Paukshtis
  • Evgenii Kovalyov
  • Bair Bal’zhinimaevEmail author
Research Article


A two-step process was employed to convert methane or ethane to light olefins via the formation of an intermediate monoalkyl halide. A novel K4RuOCl10/TiO2 catalyst was tested for the oxidative chlorination of methane and ethane. The catalyst had high selectivity for methyl and ethyl chlorides, 80% and 90%, respectively. During the oxychlorination of ethane at T⩾250°C, the formation of ethylene as a reaction product along with ethyl chloride was observed. In situ Fourier transform infrared studies showed that the key intermediate for monoalkyl chloride and ethylene formation is the alkoxy group. The reaction mechanism for the oxidative chlorination of methane and ethane over the Ru-oxychloride catalyst was proposed. The novel fiber glass catalyst was also tested for the dehydrochlorination of alkyl chlorides to ethylene and propylene. Very high selectivities (up to 94%–98%) for ethylene and propylene formation as well as high stability were demonstrated.


oxychlorination methane ethane light ole-fins ruthenium catalyst 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang W, Jiang Y, Hunger M. Mechanistic investigations of the methanol-to-olefin (MTO) process on acidic zeolite catalysts by in situ solid-state NMR spectroscopy. Catalysis Today, 2006, 113(1–2): 102–114CrossRefGoogle Scholar
  2. 2.
    Yang G, Wei Y, Xu S, Chen J, Li J, Liu Z, Yu J R. Nanosizeenhanced lifetime of SAPO-34 catalysts in methanol-to-olefin reactions. J Phys Chem C, 2013, 117(16): 8214–8222CrossRefGoogle Scholar
  3. 3.
    Vora B V, Marker T L, Barger P T, Nilsen H R, Kvisle S, Fuglerud T. Economic route for natural gas conversion to ethylene and propylene. Studies in Surface Science and Catalysis, 1997, 107: 87–98CrossRefGoogle Scholar
  4. 4.
    Wang C, Xu L, Wang Q. Review of directly producing light olefins via CO hydrogenation. Journal of Natural Gas Chemistry, 2003, 12(1): 10–16Google Scholar
  5. 5.
    Abelló D S, Montané D D. Exploring iron-based multifunctional catalysts for Fischer-Tropsch synthesis: A review. ChemSusChem, 2011, 4(11): 1538–1556CrossRefGoogle Scholar
  6. 6.
    Galvis H M T, Bitter J H, Khare C B, Ruitenbeek M, Dugulan A I, de Jong K P. Supported iron nanoparticles as catalysts for sustainable production of lower olefins. Science, 2012, 325(6070): 835–838CrossRefGoogle Scholar
  7. 7.
    Chen W, Fan Z, Pan X, Bao X. Effect of confinement in carbon nanotubes on the activity of Fischer-Tropsch iron catalyst. Journal of the American Chemical Society, 2008, 130(29): 9414–9419CrossRefGoogle Scholar
  8. 8.
    Olah G A, Gupta B, Farina M, Felberg J D, Ip W M, Husain A, Karpeles R, Lammertsma K, Melhotra A K, Trivedi N J. Selective Monohalogenation of methane over supported acid or platinum metal catalysts and hydrolysis of methyl halides over γ-aluminasupported metal oxide/hydroxide catalysts. A feasible path for the oxidative conversion of methane into methyl alcohol/dimethyl ether. Journal of the American Chemical Society, 1985, 107(24): 7097–7105CrossRefGoogle Scholar
  9. 9.
    Olah G A, Renner R, Schilling P, Mo Y K. Antimony pentafluoride aluminum trichloride, and silver antimony hexafluoride catalyzed chlorination and chlorolysis of alkanes and cycloalkanes. Journal of the American Chemical Society, 1973, 95(23): 7686–7692CrossRefGoogle Scholar
  10. 10.
    Jauman D, Su B L. Direct catalytic conversion of chloromethane to higher hydrocarbons over a series of ZSM-5 zeolites exchanged with alkali cations. Jounal of Molecular Catalysis A, 2003, 197(1–2): 263–273CrossRefGoogle Scholar
  11. 11.
    Wei Y, Zhang D, Liu Z, Su B. Highly efficient catalytic conversion of chloromethane to light olefins over HSAPO-34 as studied by catalytic testing and in situ FTIR. Journal of Catalysis, 2006, 238(1): 46–57CrossRefGoogle Scholar
  12. 12.
    Seki K. Development of RuO2/Rutile TiO2 catalyst for industrial HCl oxidation process. Catalysis Surveys from Asia, 2010, 14(3–4): 168–175CrossRefGoogle Scholar
  13. 13.
    Taylor C E, Noceti R P, Schehl R R. Direct conversion of methane to liquid hydrocarbons through chlorocarbon intermediates. Studies in Surface Science and Catalysis, 1988, 36: 483–489CrossRefGoogle Scholar
  14. 14.
    Taylor C E. Conversion of substituted methanes over ZSM-catalyst. Stud Surf Sci Catal, 2000, 130D: 3633–3638CrossRefGoogle Scholar
  15. 15.
    Sun Y, Campbell S M, Lunsford J H, Lewis G E, Palke D, Tau L M. The catalytic conversion of methyl chloride to ethylene and propylene over phosphorus-modified Mg-ZSM-5 zeolites. Journal of Catalysis, 1993, 143(1): 32–44CrossRefGoogle Scholar
  16. 16.
    Zhang D, Wei Y, Xu L, Chang F, Liu Z, Meng S, Su B L, Liu Z. MgAPSO-34 molecular sieves with various Mg stoichiometries: Synthesis, characterization and catalytic behavior in the direct transformation of chloromethane into light olefins. Micro Meso Mater, 2008, 116(1–3): 684–692CrossRefGoogle Scholar
  17. 17.
    Liu Z, Huang L, Li W S, Yang F, Au C T, Zhou X P. Higher hydrocarbons from methane condensation mediated by HBr. Journal of Molecular Catalysis, 2007, 273(1–2): 14–20Google Scholar
  18. 18.
    Lin R, Ding Y, Gong L, Dong W, Wang J, Zhang T. Efficient and stable silica-supported iron phosphate catalysts for oxidative bromination of methane. Journal of Catalysis, 2010, 272(1): 65–73CrossRefGoogle Scholar
  19. 19.
    Degirmenci V, Yilmaz A, Uner D. Selective methane bromination over sulfated zirconia in SBA-15 catalysts. Catalysis Today, 2009, 142(1–2): 30–33CrossRefGoogle Scholar
  20. 20.
    Peringer E, Podkolzin S G, Jones M E, Olindo R, Lercher J A. LaCl3-based catalysts for oxidative chlorination of CH4. Topics in Catalysis, 2006, 38(1–3): 211–220CrossRefGoogle Scholar
  21. 21.
    Podkolzin S G, Stangland E E, Jones M E, Peringer E, Lercher J A. Methyl chloride production from methane over lantanium-based catalysts. Journal of the American Chemical Society, 2007, 129(9): 2569–2576CrossRefGoogle Scholar
  22. 22.
    Peringer E, Salzinger M, Hutt M, Lemonidou A A, Lercher J A. Modified lantanum catalysts for oxidative chlorination of methane. Topics in Catalysis, 2009, 52(9): 1220–1231CrossRefGoogle Scholar
  23. 23.
    He J, Xu T, Wang Z, Zhang Q, Deng W, Wang Y. Tranformation of methane to propylene: A two-step reaction route catalyzed by modified CeO2 nanocrystals and zeolites. Angewandte Chemie International Edition, 2012, 51(10): 2438–2442CrossRefGoogle Scholar
  24. 24.
    Xu T, Zhang Q, Song H, Wang Y. Fluoride-treated H-ZSM-5 as a highly selective and stable catalyst for the production of propylene from methyl halides. Journal of Catalysis, 2012, 295: 232–241CrossRefGoogle Scholar
  25. 25.
    Bal’zhinimaev B S, Paukshtis E A, Lapina O B, Suknev A P, Kirillov V L, Mikenin P E, Zagoruiko A N. Glass fiber materials as a new generation of structured catalysts. Studies in Surface Science and Catalysis, 2010, 175: 43–50CrossRefGoogle Scholar
  26. 26.
    Crihan D, Knapp M, Zweidinger S, Lundgren E, Weststrate C J, Andersen J N, Seitsonen A P, Over H. Stable deacon process for HCl oxidation over RuO2. Angewandte Chemie International Edition, 2008, 120(11): 2161–2164Google Scholar
  27. 27.
    Hevia M A G, Amrute A P, Schmidt T, Perez-Ramirez J. Transient mechanistic study of the gas-phase HCl oxidation to Cl2 on bulk and supported RuO2 catalysts. Journal of Catalysis, 2010, 276(1): 141–151CrossRefGoogle Scholar
  28. 28.
    Borello E, Zecchina A, Morterra C. Infrared study of methanol adsorption on Aerosil. I. Chemisorption at room temperature Journal of Physical Chemistry, 1967, 71(9): 2938–2945Google Scholar
  29. 29.
    Murray D K, Chang J W, Haw J F. Conversion of methyl halides to hydrocarbons on basic zeolites: A discovery by in situ NMR. Journal of the American Chemical Society, 1993, 115(11): 4732–4741CrossRefGoogle Scholar
  30. 30.
    Murray D K, Howard T, Goguen P W, Krawietz T R, Haw J F. Methyl halide reactions on multifunctional metal-exchanged zeolite catalysts. Journal of the American Chemical Society, 1994, 116(14): 6354–6360CrossRefGoogle Scholar
  31. 31.
    Paes L W, Faria R B, Machuca-Herrera J O, Machado S P. The linear μ-oxo-bis[pentachlororuthenate(IV)]_anion. Molecular orbital calculaions. Inorganica Chimica Acta, 2001, 321(1–2): 22–26CrossRefGoogle Scholar
  32. 32.
    Gazsi A, Koysa A, Bansagi T, Solymosi F. Adsorption and decomposition of ethanol on supported Au catalysts. Catalysis Today, 2011, 160(1): 70–78CrossRefGoogle Scholar
  33. 33.
    Hauchecorne B, Tytgat T, Verbruggen SW, Hauchecorne D, Terrens D, Smits M, Vinken K, Lenaerts S. Photocatalytic degradation of ethylene: An FTIR in situ study under atmospheric conditions. App Catal B Environ, 2011, 105(1–2): 111–116CrossRefGoogle Scholar
  34. 34.
    Singh M, Zhou N, Paul D K, Klabunde K J. IR spectral evidence of aldol condensation: Acetaldehyde adsorption over TiO2 surface. Journal of Catalysis, 2008, 260(2): 371–379CrossRefGoogle Scholar
  35. 35.
    Opre Z, Ferri D, Krumeich F, Mallat T, Baiker A. Insight into the nature of active redox sites in Ru-containing hydroxyapatite by DRIFT spectroscopy. Journal of Catalysis, 2007, 251(1): 48–58CrossRefGoogle Scholar
  36. 36.
    Wu W C, Chuang C C, Lin J L. Bonding geometry and reactivity of methoxy and ethoxy groups adsorbed on powdered TiO2. Journal of Physical Chemistry B, 2000, 104(36): 8719–8724CrossRefGoogle Scholar
  37. 37.
    Bhattacharyya K, Varma S, Tripathi A K, Bharadwaj S R, Tyagi A K. Mechanistic insight by in situ FTIR for the gas phase photooxidation of ethylene by V-doped titania and nano titania. Journal of Physical Chemistry B, 2009, 113(17): 5917–5928CrossRefGoogle Scholar
  38. 38.
    Bal’zhinimaev B S, Paukshtis E A, Vanag S V, Suknev A P, Zagoruiko A N. Glass Fiber Catalysts: Novel oxidation catalysts and catalytic technologies for environmental protection. Catalysis Today, 2010, 151(1–2): 195–199CrossRefGoogle Scholar
  39. 39.
    Gulyaeva Yu K, Suknev A P, Paukshtis E A, Bal’zhinimaev B S. Gas phase nitridation of silicate fiber glass materials with ammonia. Journal of Non-Crystalline Solids, 2011, 357(18): 3338–3344CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anton Shalygin
    • 1
  • Evgenii Paukshtis
    • 1
  • Evgenii Kovalyov
    • 1
  • Bair Bal’zhinimaev
    • 1
    Email author
  1. 1.Boreskov Institute of CatalysisNovosibirskRussia

Personalised recommendations