Mesoporous zeolites as efficient catalysts for oil refining and natural gas conversion

Review Article


Zeolites have been regarded as one of the most important catalysts in petrochemical industry due to their excellent catalytic performance. However, the sole micropores in zeolites severely limit their applications in oil refining and natural gas conversion. To solve the problem, mesoporous zeolites have been prepared by introducing mesopores into the zeolite crystals in recent years, and thus have the advantages of both mesostructured materials (fast diffusion and accessible for bulky molecules) and microporous zeolite crystals (strong acidity and high hydrothermal stability). In this review, after giving a brief introduction to preparation, structure, and characterization of mesoporous zeolites, we systematically summarize catalytic applications of these mesoporous zeolites as efficient catalysts in oil refining and natural gas conversion including catalytic cracking of heavy oil, alkylation, isomerization, hydrogenation, hydrodesulfurization, methane dehydroaromatization, methanol dehydration to dimethyl ether, methanol to olefins, and methanol to hydrocarbons.


mesoporous zeolite catalysis oil refining natural gas conversion 


  1. 1.
    Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews, 1997, 97(6): 2373–2420CrossRefGoogle Scholar
  2. 2.
    Davis M E. Ordered porous materials for emerging applications. Nature, 2002, 417(6891): 813–821CrossRefGoogle Scholar
  3. 3.
    Cundy C S, Cox P A. The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time. Chemical Reviews, 2003, 103(3): 663–702CrossRefGoogle Scholar
  4. 4.
    Hartmann M. Hierarchical zeolites: A proven strategy to combine shape selectivity with efficient mass transport. Angewandte Chemie International Edition, 2004, 43(44): 5880–5882CrossRefGoogle Scholar
  5. 5.
    Perez-Ramirez J, Kapteijn F, Groen J C, Domenech A, Mul G, Moulijn J A. Steam-activated FeMFI zeolites. Evolution of iron species and activity in direct N2O decomposition. Journal of Catalysis, 2003, 214(1): 33–45CrossRefGoogle Scholar
  6. 6.
    Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Ordered mesoporous molecular-sieves synthesized by a liquidcrystal template mechanism. Nature, 1992, 359(6397): 710–712CrossRefGoogle Scholar
  7. 7.
    Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W, McCullen S B, Higgins J B, Schlenker J L. A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. Journal of the American Chemical Society, 1992, 114(27): 10834–10843CrossRefGoogle Scholar
  8. 8.
    Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350): 548–552CrossRefGoogle Scholar
  9. 9.
    Zhao D Y, Huo Q S, Feng J L, Chmelka B F, Stucky G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 1998, 120(24): 6024–6036CrossRefGoogle Scholar
  10. 10.
    Davis M E. Introduction to large-pore molecular-sieves. Catalysis Today, 1994, 19(1): 1–5CrossRefGoogle Scholar
  11. 11.
    Liu Y, Zhang W Z, Pinnavaia T J. Steam-stable aluminosilicate mesostructures assembled from zeolite type Y seeds. Journal of the American Chemical Society, 2000, 122(36): 8791–8792CrossRefGoogle Scholar
  12. 12.
    Liu Y, Zhang W Z, Pinnavaia T J. Steam-stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5 and zeolite beta seeds. Angewandte Chemie International Edition, 2001, 40(7): 1255–1258CrossRefGoogle Scholar
  13. 13.
    Zhang Z T, Han Y, Zhu L, Wang R W, Yu Y, Qiu S L, Zhao D Y, Xiao F S. Strongly acidic and high-temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure. Angewandte Chemie International Edition, 2001, 40 (7): 1258–1262CrossRefGoogle Scholar
  14. 14.
    Xiao F S, Han Y, Yu Y, Meng X J, Yang M, Wu S. Hydrothermally stable ordered mesoporous titanosilicates with highly active catalytic sites. Journal of the American Chemical Society, 2002, 124(6): 888–889CrossRefGoogle Scholar
  15. 15.
    Han Y, Li D F, Zhao L, Song J W, Yang X Y, Li N, Di Y, Li C J, Wu S, Xu X Z, Meng X J, Lin K F, Xiao F S. High-temperature generalized synthesis of stable ordered mesoporous silica-based materials by using fluorocarbon-hydrocarbon surfactant mixtures. Angewandte Chemie International Edition, 2003, 42(31): 3633–3637CrossRefGoogle Scholar
  16. 16.
    Li D F, Han Y, Song J W, Zhao L, Xu X Z, Di Y, Xiao F S. Hightemperature synthesis of stable ordered mesoporous silica materials by using fluorocarbon-hydrocarbon surfactant mixtures. Chemistry (Weinheim an der Bergstrasse, Germany), 2004, 10(23): 5911–5922CrossRefGoogle Scholar
  17. 17.
    Tao Y S, Kanoh H, Abrams L, Kaneko K. Mesopore-modified zeolites: Preparation, characterization, and applications. Chemical Reviews, 2006, 106(3): 896–910CrossRefGoogle Scholar
  18. 18.
    Xia Y D, Mokaya R. Are mesoporous silicas and aluminosilicas assembled from zeolite seeds inherently hydrothermally stable? Comparative evaluation of MCM-48 materials assembled from zeolite seeds. Journal of Materials Chemistry, 2004, 14(23): 3427–3435CrossRefGoogle Scholar
  19. 19.
    Tosheva L, Valtchev V P. Nanozeolites: Synthesis, crystallization mechanism, and applications. Chemistry of Materials, 2005, 17(10): 2494–2513CrossRefGoogle Scholar
  20. 20.
    Schoeman B J, Sterte J, Otterstedt J E. Colloid Zeolite Suspensions. Zeolites, 1994, 14(2): 110–116CrossRefGoogle Scholar
  21. 21.
    Freyhardt C C, Tsapatsis M, Lobo R F, Balkus K J Jr, Davis ME. A high-silica zeolite with a 14-tetrahedral-atom pore opening. Nature, 1996, 381(6580): 295–298CrossRefGoogle Scholar
  22. 22.
    Davis M E, Saldarriaga C, Montes C, Garces J, Crowder C. A molecular-sieve with 18-membered rings. Nature, 1988, 331(6158): 698–699CrossRefGoogle Scholar
  23. 23.
    Corma A, Diaz-Cabanas M J, Jorda J L, Martinez C, Moliner M. High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 2006, 443(7113): 842–845CrossRefGoogle Scholar
  24. 24.
    Huo Q H, Xu R R, Li S G, Ma Z G, Thomas J M, Jones R H, Chippindale A M. Synthesis and characterization of a novel extra large ring of aluminophosphate JDF-20. Journal of the Chemical Society. Chemical Communications, 1992, (12): 875–876Google Scholar
  25. 25.
    Sun J L, Bonneau C, Cantin A, Corma A, Diaz-Cabanas M J, Moliner M, Zhang D L, Li MR, Zou X D. The ITQ-37 mesoporous chiral zeolite. Nature, 2009, 458(7242): 1154–1157CrossRefGoogle Scholar
  26. 26.
    Jiang J X, Jorda J L, Yu J H, Baumes L A, Mugnaioli E, Diaz-Cabanas M J, Kolb U, Corma A. Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43. Science, 2011, 333(6046): 1131–1134CrossRefGoogle Scholar
  27. 27.
    Meng X J, Nawaz F, Xiao F S. Templating route for synthesizing mesoporous zeolites with improved catalytic properties. Nano Today, 2009, 4(4): 292–301CrossRefGoogle Scholar
  28. 28.
    van Donk S, Janssen A H, Bitter J H, de Jong K P. Generation, characterization, and impact of mesopores in zeolite catalysts. Catalysis Reviews. Science and Engineering, 2003, 45(2): 297–319CrossRefGoogle Scholar
  29. 29.
    Perez-Ramirez J, Christensen C H, Egeblad K, Christensen C H, Groen J C. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews, 2008, 37(11): 2530–2542CrossRefGoogle Scholar
  30. 30.
    Egeblad K, Christensen C H, Kustova M, Christensen C H. Templating mesoporous zeolites. Chemistry of Materials, 2008, 20 (3): 946–960CrossRefGoogle Scholar
  31. 31.
    Chal R, Gerardin C, Bulut M, van Donk S. Overview and industrial assessment of synthesis strategies towards zeolites with mesopores. ChemCatChem, 2011, 3(1): 67–81CrossRefGoogle Scholar
  32. 32.
    Holm M S, Taarning E, Egeblad K, Christensen C H. Catalysis with hierarchical zeolites. Catalysis Today, 2011, 168(1): 3–16CrossRefGoogle Scholar
  33. 33.
    Lynch J, Raatz F, Dufresne P. Characterization of the textural properties of dealuminated HY forms. Zeolites, 1987, 7(4): 333–340CrossRefGoogle Scholar
  34. 34.
    Triantafillidis C S, Vlessidis A G, Evmiridis N P. Dealuminated HY zeolites: Influence of the degree and the type of dealumination method on the structural and acidic characteristics of H-Y zeolites. Industrial & Engineering Chemistry Research, 2000, 39(2): 307–319CrossRefGoogle Scholar
  35. 35.
    Groen J C, Bach T, Ziese U, Donk A M P V, de Jong K P, Moulijn J A, Perez-Ramirez J. Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals. Journal of the American Chemical Society, 2005, 127(31): 10792–10793CrossRefGoogle Scholar
  36. 36.
    Jacobsen C J H, Madsen C, Houzvicka J, Schmidt I, Carlsson A. Mesoporous zeolite single crystals. Journal of the American Chemical Society, 2000, 122(29): 7116–7117CrossRefGoogle Scholar
  37. 37.
    Kustova M, Hasselriis P, Christensen C H. Mesoporous MEL-type zeolite single crystal catalysts. Catalysis Letters, 2004, 96(3–4): 205–211CrossRefGoogle Scholar
  38. 38.
    Wei X, Smirniotis P G. Synthesis and characterization of mesoporous ZSM-12 by using carbon particles. Microporous and Mesoporous Materials, 2006, 89(1–3): 170–178CrossRefGoogle Scholar
  39. 39.
    Schmidt I, Boisen A, Gustavsson E, Stahl K, Pehrson S, Dahl S, Carlsson A, Jacobsen C J H. Carbon nanotube templated growth of mesoporous zeolite single crystals. Chemistry of Materials, 2001, 13(12): 4416–4418CrossRefGoogle Scholar
  40. 40.
    Boisen A, Schmidt I, Carlsson A, Dahl S, Brorson M, Jacobsen C J H. TEM stereo-imaging of mesoporous zeolite single crystals. Chemical Communications, 2003, (8): 958–959Google Scholar
  41. 41.
    Janssen A H, Schmidt I, Jacobsen C J H, Koster A J, de Jong K P. Exploratory study of mesopore templating with carbon during zeolite synthesis. Microporous and Mesoporous Materials, 2003, 65(1): 59–75CrossRefGoogle Scholar
  42. 42.
    Tao Y S, Kanoh H, Kaneko K. ZSM-5 monolith of uniform mesoporous channels. Journal of the American Chemical Society, 2003, 125(20): 6044–6045CrossRefGoogle Scholar
  43. 43.
    Tao Y S, Kanoh H, Kaneko K. Uniform mesopore-donated zeolite Y using carbon aerogel templating. Journal of Physical Chemistry B, 2003, 107(40): 10974–10976CrossRefGoogle Scholar
  44. 44.
    Tao Y S, Kanoh H, Kaneko K. Synthesis of mesoporous zeolite a by resorcinol-formaldehyde aerogel templating. Langmuir, 2005, 21(2): 504–507CrossRefGoogle Scholar
  45. 45.
    Tao Y S, Hattori Y, Matumoto A, Kaneko K. Comparative study on pore structures of mesoporous ZSM-5 from resorcinolformaldehyde aerogel and carbon aerogel templating. Journal of Physical Chemistry B, 2005, 109(1): 194–199CrossRefGoogle Scholar
  46. 46.
    Cho S I, Choi S D, Kim J H, Kim G J. Synthesis of zsm-5 films and monoliths with bimodal micro/mesoscopic structures. Advanced Functional Materials, 2004, 14(1): 49–54CrossRefGoogle Scholar
  47. 47.
    Yang Z X, Xia Y D, Mokya R. Zeolite ZSM-5 with unique supermicropores synthesized using mesoporous carbon as a template. Advanced Materials, 2004, 16(8): 727–732CrossRefGoogle Scholar
  48. 48.
    Sakhtivel A, Huang S J, Chen WH, Lan Z H, Chen K H, Kim TW, Ryoo R, Chiang A S T, Liu S B. Replication of mesoporous aluminosilicate molecular sieves (RMMs) with zeolite framework from mesoporous carbons (CMKs). Chemistry of Materials, 2004, 16(16): 3168–3175CrossRefGoogle Scholar
  49. 49.
    Fan W, Synder M A, Kumar S, Lee P S, Yoo W C, McCormick A V, Penn R L, Stein A, Tsapatsis M. Hierarchical nanofabrication of microporous crystals with ordered mesoporosity. Nature Materials, 2008, 7(12): 984–991CrossRefGoogle Scholar
  50. 50.
    Lee P S, Zhang X Y, Stoeger J A, Malek A, Fan W, Kumar S, Yoo W C, Al Hashimi S, Penn R L, Stein A, Tsapatsis M. Sub-40 nm zeolite suspensions via disassembly of three-dimensionally ordered mesoporous-imprinted silicalite-1. Journal of the American Chemical Society, 2011, 133(3): 493–502CrossRefGoogle Scholar
  51. 51.
    Chen H Y, Wydra J, Zhang X Y, Lee P S, Wang Z P, Fan W, Tsapatsis M. Hydrothermal synthesis of zeolites with threedimensionally ordered mesoporous-imprinted structure. Journal of the American Chemical Society, 2011, 133(32): 12390–12393 doi: 10.1021/ja2046815 Fan WTsapatsis MCrossRefGoogle Scholar
  52. 52.
    Li H C, Sakamoto Y, Liu Z, Ohsuna T, Terasaki O, Thommes M, Che S N. Mesoporous silicalite-1 zeolite crystals with unique pore shapes analogous to the morphology. Microporous and Mesoporous Materials, 2007, 106(1–3): 174–179CrossRefGoogle Scholar
  53. 53.
    Cho H S, Ryoo R. Synthesis of ordered mesoporous MFI zeolite using CMK carbon templates. Microporous and Mesoporous Materials, 2012, 151: 107–112CrossRefGoogle Scholar
  54. 54.
    Zhu H, Liu Z, Wang Y, Kong D, Yuan X, Xie Z. Nanosized CaCO3 as hard template for creation of intracrystal pores within silicalite-1 crystal. Chemistry of Materials, 2008, 20(3): 1134–1139CrossRefGoogle Scholar
  55. 55.
    Xiao F S, Wang L F, Yin C Y, Lin K F, Di Y, Li J X, Xu R R, Su D S, Schlogl R, Yokoi T, Tatsumi T. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angewandte Chemie International Edition, 2006, 45(19): 3090–3093CrossRefGoogle Scholar
  56. 56.
    Choi M, Cho H S, Srivastava R, Venkatesan C, Choi D H, Ryoo R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Materials, 2006, 5(9): 718–723CrossRefGoogle Scholar
  57. 57.
    Choi M, Srivastava R, Ryoo R. Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks. Chemical Communications, 2006, (42): 4380–4382CrossRefGoogle Scholar
  58. 58.
    Srivastava R, Choi M, Ryoo R. Mesoporous materials with zeolite framework: remarkable effect of the hierarchical structure for retardation of catalyst deactivation. Chemical Communications, 2006, (43): 4489–4491CrossRefGoogle Scholar
  59. 59.
    Wang H, Pinnavaia T J. MFI zeolite with small and uniform intracrystal mesopores. Angewandte Chemie International Edition, 2006, 45(45): 7603–7606CrossRefGoogle Scholar
  60. 60.
    Zhu H B, Liu Z C, Kong D J, Wang Y D, Xie Z K. Synthesis and catalytic performances of mesoporous zeolites templated by polyvinyl butyral gel as the mesopore directing agent. Journal of Physical Chemistry C, 2008, 112(44): 17257–17264CrossRefGoogle Scholar
  61. 61.
    Fu W Q, Zhang L, Tang T D, Ke Q P, Wang S, Hu J B, Fang G Y, Li J X, Xiao F S. Extraordinarily high activity in the hydrodesulfurization of 4,6-dimethyldibenzothiophene over Pd supported on mesoporous zeolite Y. Journal of the American Chemical Society, 2011, 133(39): 15346–15349CrossRefGoogle Scholar
  62. 62.
    Zhu Y, Hua Z L, Zhou J, Wang L J, Zhao J J, Gong Y, Wu W, Ruan M L, Shi J L. Hierarchical mesoporous zeolites: Direct self-Assembly synthesis in a conventional surfactant solution by kinetic control over the zeolite seed formation. Chemistry (Weinheim an der Bergstrasse, Germany), 2011, 17(51): 14618–14627CrossRefGoogle Scholar
  63. 63.
    Zhou J, Hua Z L, Liu Z C, Wu W, Zhu Y, Shi J L. Direct synthetic strategy of mesoporous ZSM-5 zeolites by using conventional block copolymer templates and the improved catalytic properties. Acs Catalysis, 2011, 1(4): 287–291CrossRefGoogle Scholar
  64. 64.
    Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7261): 246–250CrossRefGoogle Scholar
  65. 65.
    Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R. Pillared MFI zeolite nanosheets of a single-unit-cell thickness. Journal of the American Chemical Society, 2010, 132(12): 4169–4177CrossRefGoogle Scholar
  66. 66.
    Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger R J, Chmelka B F, Ryoo R. Directing zeolite structures into hierarchically nanoporous architectures. Science, 2011, 333(6040): 328–332CrossRefGoogle Scholar
  67. 67.
    Liu F J, Willhammar T, Wang L, Zhu L F, Sun Q, Meng X J, Carrillo-Cabrera W, Zou X D, Xiao F S. ZSM-5 zeolite single crystals with b-axis-aligned mesoporous channels as an efficient catalyst for conversion of bulky organic molecules. Journal of the American Chemical Society, 2012, 134(10): 4557–4560CrossRefGoogle Scholar
  68. 68.
    Kung H H, Williams B A, Babitz SM, Miller J T, Haag WO, Snurr R Q. Enhanced hydrocarbon cracking activity of Y zeolites. Topics in Catalysis, 2000, 10(1–2): 59–64CrossRefGoogle Scholar
  69. 69.
    Haag W O, Lago R M, Weisz P B. Transport and reactivity of hydrocarbon molecules in a shape-selective zeolite. Faraday Discussions, 1981, 72: 317–330CrossRefGoogle Scholar
  70. 70.
    Garcia-Martinez J, Johnson M, Valla J, Li K H, Ying J Y. Mesostructured zeolite Y-high hydrothermal stability and superior FCC catalytic performance. Catalysis Science & Technology, 2012, 2(5): 987–994CrossRefGoogle Scholar
  71. 71.
    Tan Q F, Fan Y, Liu H Y, Song T C, Shi G, Shen B J, Bao X. Bimodal micro-mesoporous aluminosilicates for heavy oil cracking: Porosity tuning and catalytic properties. AIChE Journal. American Institute of Chemical Engineers, 2008, 54(7): 1850–1859 Bao X JCrossRefGoogle Scholar
  72. 72.
    Siddiqui M A B, Aitani A M, Saeed M R, Al-Yassir N, Al-Khattaf S. Enhancing propylene production from catalytic cracking of Arabian Light VGO over novel zeolites as FCC catalyst additives. Fuel, 2011, 90(2): 459–466CrossRefGoogle Scholar
  73. 73.
    Park D H, Kim S S, Wang H, Pinnavaia T J, Papapetrou M C, Lappas A A, Triantafyllidis K S. Selective petroleum refining over a zeolite catalyst with small intracrystal mesopores. Angewandte Chemie International Edition, 2009, 48(41): 7645–7648CrossRefGoogle Scholar
  74. 74.
    Wang L F, Yin C Y, Shan Z C, Liu S, Du Y C, Xiao F S. Breadtemplate synthesis of hierarchical mesoporous ZSM-5 zeolite with hydrothermally stable mesoporosity. Colloids and Surfaces A, 2009, 340(1–3): 126–130Google Scholar
  75. 75.
    Lei Q, Zhao T B, Li F Y, Zhang L L, Wang Y. Catalytic cracking of large molecules over hierarchical zeolites. Chemical Communications (Cambridge), 2006, (16): 1769–1771CrossRefGoogle Scholar
  76. 76.
    Christensen C H, Schmidt I, Christensen C H. Improved performance of mesoporous zeolite single crystals in catalytic cracking and isomerization of n-hexadecane. Catalysis Communications, 2004, 5(9): 543–546CrossRefGoogle Scholar
  77. 77.
    Kustova M, Egeblad K, Christensen C H, Kustov A L, Christensen C H. Hierarchical zeolites: Progress on synthesis and characterization of mesoporous zeolite single crystal catalysts. Studies in Surface Science and Catalysis, 2007, 170: 267–275CrossRefGoogle Scholar
  78. 78.
    Kustova M Y, Hasselriis P, Christensen C H. Mesoporous MELtype zeolite single crystal catalysts. Catalysis Letters, 2004, 96(3–4): 205–211CrossRefGoogle Scholar
  79. 79.
    Shetti V N, Kim J, Srivastava R, Choi M, Ryoo R. Assessment of the mesopore wall catalytic activities of MFI zeolite with mesoporous/microporous hierarchical structures. Journal of Catalysis, 2008, 254(2): 296–303CrossRefGoogle Scholar
  80. 80.
    Christensen C H, Johannsen K, Schmidt I, Christensen C H. Catalytic benzene alkylation over mesoporous zeolite single crystals: Improving activity and selectivity with a new family of porous materials. Journal of the American Chemical Society, 2003, 125(44): 13370–13371CrossRefGoogle Scholar
  81. 81.
    Christensen C H, Johannsen K, Toernqvist E, Schmidt I, Topsoe H, Christensen C H. Mesoporous zeolite single crystal catalysts: Diffusion and catalysis in hierarchical zeolites. Catalysis Today, 2007, 128(1–2): 117–122CrossRefGoogle Scholar
  82. 82.
    Perez-Ramirez J, Verboekend D, Bonilla A, Abello S. Zeolite Catalysts with tunable hierarchy factor by pore-growth moderators. Advanced Functional Materials, 2009, 19(24): 3972–3979CrossRefGoogle Scholar
  83. 83.
    van Iaak A N C, Gosselink R W, Sagala S L, Meeldijk J D, de Jongh P E, de Jong K P. Alkaline treatment on commercially available aluminum rich mordenite. Applied Catalysis A, General, 2010, 382(1): 65–72CrossRefGoogle Scholar
  84. 84.
    van Laak A N C, Sagala S L, Zecevic J, Friedrich H, de Jongh P E, de Jong K P. Mesoporous mordenites obtained by sequential acid and alkaline treatments-Catalysts for cumene production with enhanced accessibility. Journal of Catalysis, 2010, 276(1): 170–180CrossRefGoogle Scholar
  85. 85.
    Pellet R J, Casey D G, Huang H M, Kessler R V, Kuhlman E J, Oyoung C L, Sawicki R A, Ugolini J R. Isomerization of n-butene to isobutene by ferrierite and modified ferrierite catalysts. Journal of Catalysis, 1995, 157(2): 423–435CrossRefGoogle Scholar
  86. 86.
    Khitev Y P, Kolyagin Y G, Ivanova I I, Ponomareva O A, Thibault-Starzyk F, Gilson J P, Fernandez C, Fajula F. Synthesis and catalytic properties of hierarchical micro/mesoporous materials based on FER zeolite. Microporous and Mesoporous Materials, 2011, 146(1–3): 201–207CrossRefGoogle Scholar
  87. 87.
    Matias P, Couto C S, Graca I, Lopes J M, Carvalho A P, Ribeiro F R, Guisnet M. Desilication of a TON zeolite with NaOH: Influence on porosity, acidity and catalytic properties. Applied Catalysis A, General, 2011, 399(1–2): 100–109CrossRefGoogle Scholar
  88. 88.
    van Donk S, Broersma A, Gijzeman O L J, van Bokhoven J A, Bitter J H, de Jong K P. Combined diffusion, adsorption, and reaction studies of n-hexane hydroisomerization over Pt/H-mordenite in an oscillating microbalance. Journal of Catalysis, 2001, 204(2): 272–280CrossRefGoogle Scholar
  89. 89.
    Chao P H, Tsai S T, Chang S L, Wang I, Tsai T C. Hexane isomerization over hierarchical Pt/MFI zeolite. Topics in Catalysis, 2010, 53(1–2): 231–237CrossRefGoogle Scholar
  90. 90.
    Modhera B K, Chakraborty M, Bajaj H C, Parikh P A. Influences of mesoporosity generation in ZSM-5 and zeolite beta on catalytic performance during n-hexane isomerization. Catalysis Letters, 2011, 141(8): 1182–1190CrossRefGoogle Scholar
  91. 91.
    Moushey D L, Smirniotis P G. n-Heptane hydroisomerization over mesoporous zeolites made by utilizing carbon particles as the template for mesoporosity. Catalysis Letters, 2009, 129(1–2): 20–25CrossRefGoogle Scholar
  92. 92.
    Verboekend D, Thomas K, Milina M, Mitchell S, Perez-Ramirez J, Gilson J P. Towards more efficient monodimensional zeolite catalysts: n-Alkane hydro-isomerisation on hierarchical ZSM-22. Catalysis Science & Technology, 2011, 1(8): 1331–1335CrossRefGoogle Scholar
  93. 93.
    Fan Y, Xiao H, Shi G, Liu H Y, Bao X J. Alkylphosphonic acidand small amine-templated synthesis of hierarchical silicoaluminophosphate molecular sieves with high isomerization selectivity to di-branched paraffins. Journal of Catalysis, 2012, 285(1): 251–259CrossRefGoogle Scholar
  94. 94.
    Qin B, Zhang X W, Zhang Z Z, Ling F X, Sun W F. Synthesis, characterization and catalytic properties of Y-beta zeolite composites. Petroleum Science, 2011, 8(2): 224–228CrossRefGoogle Scholar
  95. 95.
    Chica A, Diaz U, Fornes V, Corma A. Changing the hydroisomerization to hydrocracking ratio of long chain alkanes by varying the level of delamination in zeolitic (ITQ-6) materials. Catalysis Today, 2009, 147(3–4): 179–185CrossRefGoogle Scholar
  96. 96.
    Fernandez C, Stan I, Gilson J P, Thomas K, Vicente A, Bonilla A, Perez-Ramirez J. Hierarchical ZSM-5 zeolites in shape-selective xylene isomerization: Role of mesoporosity and acid site speciation. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(21): 6224–6233CrossRefGoogle Scholar
  97. 97.
    Mihalyi R M, Kollar M, Kiraly P, Karoly Z, Mavrodinova V. Effect of extra-framework Al formed by successive steaming and acid leaching of zeolite MCM-22 on its structure and catalytic performance. Applied Catalysis A, General, 2012, 417: 76–86CrossRefGoogle Scholar
  98. 98.
    Tang T D, Yin C Y, Wang L F, Ji Y Y, Xiao F S. Superior performance in deep saturation of bulky aromatic pyrene over acidic mesoporous beta zeolite-supported palladium catalyst. Journal of Catalysis, 2007, 249(1): 111–115CrossRefGoogle Scholar
  99. 99.
    Tang T D, Yin C Y, Wang L F, Ji Y Y, Xiao F S. Good sulfur tolerance of a mesoporous beta zeolite-supported palladium catalyst in the deep hydrogenation of aromatics. Journal of Catalysis, 2008, 257(1): 125–133CrossRefGoogle Scholar
  100. 100.
    Sun Y Y, Prins R. Hydrodesulfurization of 4,6-dimethyldibenzothiophene over noble metals supported on mesoporous zeolites. Angewandte Chemie International Edition, 2008, 47(44): 8478–8481CrossRefGoogle Scholar
  101. 101.
    Zheng J J, Zeng Q H, Zhang Y Y, Wang Y, Ma J H, Zhang X W, Sun W F, Li R F. Hierarchical porous zeolite composite with a core-shell structure fabricated using beta-zeolite crystals as nutrients as well as cores. Chemistry of Materials, 2010, 22(22): 6065–6074CrossRefGoogle Scholar
  102. 102.
    Xu Y D, Lin L W. Recent advances in methane dehydroaromatization over transition metal ion-modified zeolite catalysts under non-oxidative conditions. Applied Catalysis A, General, 1999, 188(1–2): 53–67CrossRefGoogle Scholar
  103. 103.
    Su L L, Liu L, Zhuang J Q, Wang H X, Li Y G, Shen WJ, Xu Y D, Bao X H. Creating mesopores in ZSM-5 zeolite by alkali treatment: A new way to enhance the catalytic performance of methane dehydroaromatization on Mo/HZSM-5 catalysts. Catalysis Letters, 2003, 91(3–4): 155–167CrossRefGoogle Scholar
  104. 104.
    Chu N B, Yang J H, Li C Y, Cui J Y, Zhao Q Y, Yin X Y, Lu J M, Wang J Q. An unusual hierarchical ZSM-5 microsphere with good catalytic performance in methane dehydroaromatization. Microporous and Mesoporous Materials, 2009, 118(1–3): 169–175CrossRefGoogle Scholar
  105. 105.
    Martinez A, Peris E, Derewinski M, Burkat-Dulak A. Improvement of catalyst stability during methane dehydroaromatization (MDA) on Mo/HZSM-5 comprising intracrystalline mesopores. Catalysis Today, 2011, 169(1): 75–84CrossRefGoogle Scholar
  106. 106.
    Liu H, Yang S, Hu J, Shang F P, Li Z F, Xu C, Guan J Q, Kan Q B. A comparison study of mesoporous Mo/H-ZSM-5 and catalysts in methane non-oxidative aromatization. Fuel Processing Technology, 2012, 96: 195–202CrossRefGoogle Scholar
  107. 107.
    Chu N B, Wang J Q, Zhang Y, Yang J H, Lu J M, Yin D H. Nestlike hollow hierarchical MCM-22 microspheres: synthesis and exceptional catalytic properties. Chemistry of Materials, 2010, 22(9): 2757–2763CrossRefGoogle Scholar
  108. 108.
    Tang Q, Xu H, Zheng Y Y, Wang J F, Li H S, Zhang J. Zhang Jun. Catalytic dehydration of methanol to dimethyl ether over micromesoporous ZSM-5/MCM-41 composite molecular sieves. Applied Catalysis A, General, 2012, 413: 36–42CrossRefGoogle Scholar
  109. 109.
    Cho K, Cho H S, de Menorval L C, Ryoo R. Generation of mesoporosity in LTA zeolites by organosilane surfactant for rapid molecular transport in catalytic application. Chemistry of Materials, 2009, 21(23): 5664–5673CrossRefGoogle Scholar
  110. 110.
    Mei C S, Wen P Y, Liu Z C, Liu H X, Wang Y D, Yang WM, Xie Z K, Hua W M, Gao Z. Selective production of propylene from methanol: Mesoporosity development in high silica HZSM-5. Journal of Catalysis, 2008, 258(1): 243–249CrossRefGoogle Scholar
  111. 111.
    Zhu J, Cui Y, Wang Y, Wei F. Direct synthesis of hierarchical zeolite from a natural layered material. Chemical Communications, 2009, (22): 3282–3284Google Scholar
  112. 112.
    Wang P F, Lv A L, Hu J, Xu J A, Lu G Z. In situ synthesis of SAPO-34 grown onto fully calcined kaolin microspheres and its catalytic properties for the MTO reaction. Industrial & Engineering Chemistry Research, 2011, 50(17): 9989–9997CrossRefGoogle Scholar
  113. 113.
    Olsbye U, Svelle S, Bjorgen M, Beato P, Janssens T V W, Joensen F, Bordiga S, Lillerud K P. Conversion of methanol to hydrocarbons: How zeolite cavity and pore size controls product selectivity. Angewandte Chemie International Edition, 2012, 51(24): 5810–5831CrossRefGoogle Scholar
  114. 114.
    Lietz G, Schnabel K H, Peuker C, Gross T, Storek W, Volter J. Modifications of H-ZSM-5 catalysts by NaOH treatment. Journal of Catalysis, 1994, 148(2): 562–568CrossRefGoogle Scholar
  115. 115.
    Bjorgen M, Joensen F, Holm M S, Olsbye U, Lillerud K P, Svelle S. Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH. Applied Catalysis A, General, 2008, 345(1): 43–50CrossRefGoogle Scholar
  116. 116.
    Kim J, Choi M, Ryoo R. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-tohydrocarbon conversion process. Journal of Catalysis, 2010, 269 (1): 219–228CrossRefGoogle Scholar
  117. 117.
    Ni Y M, Sun A M, Wu X L, Hai G L, Hu J L, Li T, Li G X. Preparation of hierarchical mesoporous Zn/HZSM-5 catalyst and its application in MTG reaction. Journal of Natural Gas Chemistry, 2011, 20(3): 237–242CrossRefGoogle Scholar
  118. 118.
    Rownaghi A A, Hedlund J. Methanol to gasoline-range hydrocarbons: Influence of nanocrystal size and mesoporosity on catalytic performance and product distribution of ZSM-5. Industrial & Engineering Chemistry Research, 2011, 50(21): 11872–11878CrossRefGoogle Scholar
  119. 119.
    Vennestrom P N R, Grill M, Kustova M, Egeblad K, Lundegaard L F, Joensen F, Christensen C H, Beato P. Hierarchical ZSM-5 prepared by guanidinium base treatment: Understanding microstructural characteristics and impact on MTG and NH3-SCR catalytic reactions. Catalysis Today, 2011, 168(1): 71–79CrossRefGoogle Scholar
  120. 120.
    Rownaghi A A, Rezaei F, Hedlund J. Rezaei, Hedlund J. Uniform mesoporous ZSM-5 single crystals catalyst with high resistance to coke formation for methanol deoxygenation. Microporous and Mesoporous Materials, 2012, 151: 26–33Google Scholar
  121. 121.
    Kima K, Ryoo R, Jang H D, Choi M. Spatial distribution, strength, and dealumination behavior of acid sites in nanocrystalline MFI zeolites and their catalytic consequences. Journal of Catalysis, 2012, 288: 115–123CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of ChemistryZhejiang UniversityHangzhouChina
  2. 2.College of Biological, Chemical Sciences and EngineeringJiaxing UniversityJiaxingChina

Personalised recommendations