Skip to main content

Effects of a structurally related substance on the crystallization of paracetamol


Paracetamol (PCM) was crystallized from an isopropanol (IPA) solution containing various small amounts of metacetamol as an additive. The effect on the nucleation kinetics was studied by measuring the induction time to nucleation and the metastable zone width using focused beam reflectance measurements (FBRM) and attenuated total reflectance (ATR-UV/Vis) spectroscopy. Both the induction time and the metastable zone width were expressed as functions of the additive concentration. Small amounts of metacetamol (1–4 mol-%) were found to cause significant inhibition to the nucleation by extending both the induction time and the metastable zone width. A progressive change in the morphology of the paracetamol crystals from tabular to columnar habit was observed with increasing metacetamol concentration. The solvent also had a significant effect on the size of the paracetamol crystals as smaller crystals were obtained in IPA than in aqueous solution. The dissolution rate of paracetamol was improved by the incorporation of metacetamol with 4 mol-% having the most effect. A supersaturation control (SSC) approach was implemented for the PCM-IPA system with and without metacetamol in an attempt to control and obtain larger metacetamol-doped paracetamol crystals.

This is a preview of subscription content, access via your institution.


  1. 1.

    Mullin J W. Industrial Crystallisation. London: Butterworths, 1993, 277–278

    Google Scholar 

  2. 2.

    Klug D L. The influence of impurities and solvents on crystallisation. In: Myerson A, ed. Handbook of Industrial Crystallisation. New York: Butterworths, 1993, 65–87

    Google Scholar 

  3. 3.

    Weissbuch I, Leiserowitz L, Lahav M. Tailor-made additives and impurities. In: Mersmann A, ed. Crystallisation Technology Handbook. New York: Marcel Dekker, 1995, 401–457

    Google Scholar 

  4. 4.

    Prasad K V R, Ristic R I, Sheen D B, Sherwood J N. Crystallization of paracetamol from solution in the presence and absence of impurity. International Journal of Pharmaceutics, 2001, 215(1–2): 29–44

    Article  CAS  Google Scholar 

  5. 5.

    Thompson C, Davies MC, Roberts C J, Tendler S J B, Wilkinson M J. The effects of additives on the growth and morphology of paracetamol (acetaminophen) crystals. International Journal of Pharmaceutics, 2004, 280(1–2): 137–150

    Article  CAS  Google Scholar 

  6. 6.

    Hendriksen B A, Grant D J W. The effect of structurally related substances on the nucleation kinetics of paracetamol (acetaminophen). Journal of Crystal Growth, 1995, 156(3): 252–260

    Article  CAS  Google Scholar 

  7. 7.

    Hendriksen B A, Grant D J W, Meenan P, Green D A. Crystallisation of paracetamol (acetaminophen) in the presence of structurally related substances. Journal of Crystal Growth, 1998, 183(4): 629–640

    Article  CAS  Google Scholar 

  8. 8.

    Prasad K V R, Ristic R I, Sheen D B, Sherwood J N. Dissolution kinetics of paracetamol single crystals. International Journal of Pharmaceutics, 2002, 238(1–2): 29–41

    Article  CAS  Google Scholar 

  9. 9.

    Chow A H L, Chow P K K, Zhongshan W, Grant D J W. Modification of acetaminophen crystals: influence of growth in aqueous solutions containing p-acetoxyacetanilide on crystal properties. International Journal of Pharmaceutics, 1985, 24(2–3): 239–258

    Article  CAS  Google Scholar 

  10. 10.

    Femi-Oyewo M N, Spring M S. Studies on paracetamol crystals produced by growth in aqueous solutions. International Journal of Pharmaceutics, 1994, 112(1): 17–28

    Article  CAS  Google Scholar 

  11. 11.

    Shekunov B Y, Grant D J W. In situ optical interferometric studies of the growth and dissolution behavior of paracetamol (acetaminophen). 1. Growth kinetics. Journal of Physical Chemistry B, 1997, 101(20): 3973–3979

    Article  CAS  Google Scholar 

  12. 12.

    Becker R, Döring W. Kinetische Behandlung der Keimbildung in Übersättigten Dämpfen. Annals of Physics, 1935, 24: 719–752

    CAS  Google Scholar 

  13. 13.

    Nielsen A E. Kinetics of Precipitation. Oxford: Pergamon, 1964, 15–25

    Google Scholar 

  14. 14.

    Nielsen A E, Söhnel O. Interfacial tensions electrolyte crystalaqueous solution, from nucleation data. Journal of Crystal Growth, 1971, 11(3): 233–242

    Article  CAS  Google Scholar 

  15. 15.

    Van Hook A, Bruno A J. Nucleation and growth in sucrose solutions. Discussions of the Faraday Society, 1949, 5: 112–117

    Article  Google Scholar 

  16. 16.

    Sangwal K. Effect of impurities on the metastable zone width of solute-solvent systems. Journal of Crystal Growth, 2009, 311(16): 4050–4061

    Article  CAS  Google Scholar 

  17. 17.

    Nyvlt J, Sohnel O, Matuchova M, Broul M. Kinetics of Industrial Crystallisation. Amsterdam: Elsevier, 1985, 82

    Google Scholar 

  18. 18.

    Sayan P, Ulrich J. Effect of various impurities on the metastable zone width of boric acid. Crystal Research and Technology, 2001, 36(4–5): 411–417

    Article  CAS  Google Scholar 

  19. 19.

    Dhanaraj P V, Bhagavannarayana G, Rajesh N P. Effect of amino acid additives on crystal growth parameters and properties of ammonium dihydrogen orthophosphate crystals. Materials Chemistry and Physics, 2008, 112(2): 490–495

    Article  CAS  Google Scholar 

  20. 20.

    Saleemi A N, Rielly C D, Nagy Z K. Comparative investigation of supersaturation and automated direct nucleation control of crystal size distributions using ATR-UV/Vis spectroscopy and FBRM. Crystal Growth & Design, 2012, 12(4): 1792–1807

    Article  CAS  Google Scholar 

  21. 21.

    Gutwald T, Mersmann A. Batch cooling crystallization at constant supersaturation: technique and experimental results. Chemical Engineering & Technology, 1990, 13(1): 229–237

    Article  CAS  Google Scholar 

  22. 22.

    Fujiwara M, Chow P S, Ma D L, Braatz R D. Paracetamol crystallization using laser backscattering and ATR-FTIR spectroscopy: metastability, agglomeration, and control. Crystal Growth & Design, 2002, 2(5): 363–370

    Article  CAS  Google Scholar 

  23. 23.

    Abu Bakar MR, Nagy Z K, Saleemi A N, Rielly C D. The impact of direct nucleation control on crystal size distribution in pharmaceutical crystallization processes. Crystal Growth & Design, 2009, 9(3): 1378–1384

    Article  CAS  Google Scholar 

  24. 24.

    Hojjati H, Rohani S. Measurement and prediction of solubility of paracetamol in water-isopropanol solution. Part 1. Measurement and data analysis. Organic Process Research & Development, 2006, 10(6): 1101–1109

    Article  CAS  Google Scholar 

  25. 25.

    Cabrera N, Vermilyea D A. The growth of crystals from solution. In: Doremus R H, Turnbull D, eds. Growth and Perfection of Crystals. New York: Wiley, 1958, 393–410

    Google Scholar 

  26. 26.

    Ristic R I, Finnie S, Sheen D B, Sherwood J N. Macro- and micromorphology of monoclinic paracetamol grown from pure aqueous solution. Journal of Physical Chemistry B, 2001, 105(38): 9057–9066

    Article  CAS  Google Scholar 

  27. 27.

    Finnie S, Prasad K R, Sheen D, Sherwood J. Microhardness and dislocation identification studies on paracetamol single crystals. Pharmaceutical Research, 2001, 18(5): 674–681

    Article  CAS  Google Scholar 

  28. 28.

    Lahav M, Leiserowitz L. The effect of solvent on crystal growth and morphology. Chemical Engineering Science, 2001, 56(7): 2245–2253

    Article  CAS  Google Scholar 

  29. 29.

    Finnie S, Kennedy A R, Prasad K V R, Ristic R I, Sheen D B, Sherwood J N. para-Acetoxyacetanilide. Acta Crystallographica, 1999, Section C, 55(2): 234–236

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Zoltan Nagy.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Saleemi, A., Onyemelukwe, I.I. & Nagy, Z. Effects of a structurally related substance on the crystallization of paracetamol. Front. Chem. Sci. Eng. 7, 79–87 (2013).

Download citation


  • acetaminophen
  • metacetamol
  • crystallization
  • metastable zone width
  • induction time
  • supersaturation control