Skip to main content
Log in

Polyethylene glycol-supported ionic liquid as a highly efficient catalyst for the synthesis of propylene carbonate under mild conditions

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

The coupling reaction of propylene and CO2 to form propylene carbonate (PC) was promoted by an ionic liquid (IL) covalently bound to polyethylene glycol (PEG). The supported ionic liquid, which has both acidic and basic components, proved to be an active catalyst for PC synthesis under mild conditions. The effects of different cations and anions, reaction temperature, CO2 pressure, and reaction time were investigated. It was demonstrated that the acid group in the catalyst plays an important role in the reaction. With this system, a high PC yield (95%) was achieved under mild conditions (3.0 MPa, 120°C and 4 h) without a co-solvent. In addition, the catalyst was readily recovered and reused. Based on the experimental results, a plausible mechanism for the catalyst was proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sakakura T, Choi J C, Yasuda H. Transformation of carbon dioxide. Chemical Reviews, 2007, 107(6): 2365–2387

    Article  CAS  Google Scholar 

  2. Dai W L, Luo S L, Yin S F, Au C T. The direct transformation of carbon dioxide to organic carbonates over heterogeneous catalysts. Applied Catalysis A: General, 2009, 366(1): 2–12

    Article  CAS  Google Scholar 

  3. Zhang S J, Chen Y H, Li F W, Lu X M, Dai W B, Mori R. Fixation and conversion of CO2 using ionic liquids. Catalysis Today, 2006, 115(1–4): 61–69

    Article  CAS  Google Scholar 

  4. Sako T, Fukai T, Sahashi R, Sone M, Matsuno M. Cycloaddition of oxirane group with carbon dioxide in the supercritical homogeneous state. Industrial & Engineering Chemistry Research, 2002, 41(22): 5353–5358

    Article  Google Scholar 

  5. Caló V, Nacci A, Monopoli A, Fanizzi A. Cyclic carbonate formation from carbon dioxide and oxiranes in tetrabutylammonium halides as solvents and catalysts. Organic Letters, 2002, 4(15): 2561–2563

    Article  Google Scholar 

  6. Chang T, Jing HW, Jin L L, Qiu WY. Quaternary onium tribromide catalyzed cyclic carbonate synthesis from carbon dioxide and epoxides. Journal of Molecular Catalysis A: Chemical, 2007, 264(1–2): 241–247

    Article  CAS  Google Scholar 

  7. He L N, Yasuda T, Sakakura T. New procedure for recycling homogeneous catalyst: propylene carbonate synthesis under supercritical CO2. Green Chemistry, 2003, 5(1): 92–94

    Article  CAS  Google Scholar 

  8. Jiang J L, Gao F X, Hua R M, Qiu X Q. Re(CO)5Br-catalyzed coupling of epoxides with CO2 affording cyclic carbonates under solvent-free conditions. Journal of Organic Chemistry, 2005, 70(1): 381–383

    Article  CAS  Google Scholar 

  9. Kim H S, Kim J J, Kwon H N, Chung M J, Lee B G, Jang H G. Welldefined highly active heterogeneous catalyst system for the coupling reactions of carbon dioxide and epoxides. Journal of Catalysis, 2002, 205(1): 226–229

    Article  CAS  Google Scholar 

  10. Kawanami H, Sasaki A, Matsui K, Ikushima Y. A rapid and effective synthesis of propylene carbonate using a supercritical CO2-ionic liquid system. Chemical Communications, 2003, 2003(7): 896–897

    Article  Google Scholar 

  11. Wang J Q, Yue X D, Cai F, He L N. Solventless synthesis of cyclic carbonates from carbon dioxide and epoxides catalyzed by silicasupported ionic liquids under supercritical conditions. Catalysis Communications, 2007, 8(2): 167–172

    Article  CAS  Google Scholar 

  12. Peng J J, Deng Y Q. Cycloaddition of carbon dioxide to propylene oxide catalyzed with ionic liquid. New Journal of Chemistry, 2001, 25(4): 639–641

    Article  CAS  Google Scholar 

  13. Yang H Z, Gu Y L, Deng Y Q, Shi F. Electrochemical activation of carbon dioxide in ionic liquid: synthesis of cyclic carbonates at mild reaction conditions. Chemical Communications, 2002, 2002(3): 274–275

    Article  Google Scholar 

  14. Kim H S, Kim J J, Kim H, Jang H G. Imidazolium zinc tetrahalide-catalyzed coupling reaction of CO2 and ethylene oxide or propylene oxide. Journal of Catalysis, 2003, 220(1): 44–46

    Article  CAS  Google Scholar 

  15. Li F, Xiao L, Xia C, Hu B. Chemical fixationof CO2 with highly efficient ZnCl2/[BMIm]Br catalyst system. Tetrahedron Letters, 2004, 45(45): 8307–8310

    Article  CAS  Google Scholar 

  16. Sun J M, Fujita S I, Arai M. Development in the green synthesis of cyclic carbonate from carbon dioxide using ionic liquids. Journal of Organometallic Chemistry, 2005, 690(15): 3490–3497

    Article  CAS  Google Scholar 

  17. Xiao L F, Li F W, Peng J J, Xia C G. Immobilized ionic liquid zinc chloride: heterogeneous catalyst for synthesis of cyclic carbonates from carbon dioxide and epoxides. Journal of Molecular Catalysis A: Chemical, 2006, 253(1–2): 265–269

    Article  CAS  Google Scholar 

  18. Sun J, Zhang S J, Cheng W G, Ren G Y. Hydroxyl-functionalized ionic liquid: a novel efficient catalyst for chemical fixation of CO2 to cyclic carbonate. Tetrahedron Letters, 2008, 49(22): 3588–3591

    Article  CAS  Google Scholar 

  19. Kim Y J, Varma R S. Tetrahaloindate(III)-based ionic liquids in the coupling reaction of carbon dioxide and epoxides to generate cyclic carbonates: H-bonding and mechanistic studies. Journal of Organic Chemistry, 2005, 70(20): 7882–7891

    Article  CAS  Google Scholar 

  20. Tian J S, Miao C X, Wang J Q, Cai F, Du Y, Zhao Y, He L N. Efficient synthesis of dimethy carbonate from methanol, propylene oxide and CO2 catalyzed by recyclable inorganic base/phosphonium halide-functionalized polyethylene glycol. Green Chemistry, 2007, 9(6): 566–571

    Article  CAS  Google Scholar 

  21. Dai W L, Chen L, Yin S F, Luo S L, Au C T. 3-(2-Hydroxyl-ethyl)-1-propylimidazolium bromide immobilized on SBA-15 as efficient catalyst for the synthesis of cyclic carbonates via the coupling of carbon dioxide with epoxides. Catalysis Letters, 2010, 135(3–4): 295–304

    Article  CAS  Google Scholar 

  22. Wang J Q, Kong D L, Chen J Y, Cai F, He L N. Synthesis of cyclic carbonates from epoxides and carbon dioxide over silica-supported quaternary ammonium salts under supercritical conditions. Journal of Molecular Catalysis A: Chemical, 2006, 249(1–2): 143–148

    Article  CAS  Google Scholar 

  23. Du Y, Wang J Q, Chen J Y, Cai F, Tian J S, Kong D L, He L N. A poly(ethylene glycol)-supported quaternary ammonium salt for highly efficient and environmentally friendly chemical fixation of CO2 with epoxides under supercritical conditions. Tetrahedron Letters, 2006, 47(8): 1271–1275

    Article  CAS  Google Scholar 

  24. Sun J, Cheng W G, Fan W, Wang Y H, Meng Z Y, Zhang S J. Reusable and efficient polymer-supported task-specific ionic liquid catalyst for cycloaddition of epoxide with CO2. Catalysis Today, 2009, 148(3–4): 361–367

    Article  CAS  Google Scholar 

  25. Ulusoy M, Cetinkaya E, Cetinkaya B. Conversion of carbon dioxide to cyclic carbonates using diimine Ru(II) complexes as catalysts. Applied Organometallic Chemistry, 2009, 23(2): 68–74

    Article  CAS  Google Scholar 

  26. Xie Y, Zhang Z F, Jiang T, He J L, Han B X, Wu T B, Ding K L. CO2 cycloaddition reactions catalyzed by an ionic liquid grafted onto a highly cross-linked polymer matrix. Angewandte Chemie International Edition, 2007, 46(38): 7255–7258

    Article  CAS  Google Scholar 

  27. Heldebrant D J, Witt H N, Walsh S M, Ellis T, Rauscher J, Jessop P G. Liquid polymers as solvents for catalytic reductions. Green Chemistry, 2006, 8(9): 807–815

    Article  CAS  Google Scholar 

  28. Gourgouillon D, Avelino H J, Fareleira J, Ponte M N. Simultaneous viscosity and density measurement of supercritical CO2-satureted PEG 400. Journal of Supercritical Fluids, 1998, 13(1–3): 177–185

    Article  CAS  Google Scholar 

  29. Harrison K L, Johnston K P, Sanchez I C. Effect of surfactants on the interfacial tension between supercritical carbonate dioxide and polyethylene glocol. Langmuir, 1996, 12(11): 2637–2644

    Article  CAS  Google Scholar 

  30. Dariva C, Coelho L A F, Oliveira J V. A kinetic approach for predicting diffusivities in dense fluid mixtures. Fluid Phase Equilibria, 1999, 158–160(b): 1045–1054

    Article  Google Scholar 

  31. Kawanami H, Sasaki A, Matsui K, Ikushima Y. A rapid and effective synthesis of propylene carbonate using a supercritical CO2-ionic liquid system. Chemical Communications, 2003, 7(7): 896–897

    Article  Google Scholar 

  32. Nomura R, Kimura M, Teshima S, Ninagawa A, Matsuda H. Directsynthesis of cyclic carbonates in the presence of organometallic compounds. Catalyses by systems from IVA, VA, and VIA group compounds and Lewis base. Bulletin of the Chemical Society of Japan, 1982, 55(10): 3200–3203

    Article  CAS  Google Scholar 

  33. Udayakumar S, Lee M K, Shim H L, Park D W. Functionalization of organic ions on hybrid MCM-41 for cycloaddition reaction: the effective conversion of carbon dioxide. Applied Catalysis A: General, 2009, 365(1): 88–95

    Article  CAS  Google Scholar 

  34. Udayakumar S, Park S W, Park D W, Choi B S. Immobilization of ionic liquid on hybrid MCM-41 system for the chemical fixation of carbon dioxide on cyclic carbonate. Catalysis Communications, 2008, 9(7): 1563–1570

    Article  CAS  Google Scholar 

  35. Zhu A L, Jiang T, Han B X, Zhang J C, Xie Y, Ma X M. Supported choline chloride/urea as a heterogeneous catalyst for chemical fixation of carbon dioxide to cyclic carbonates. Green Chemistry, 2007, 9(2): 169–172

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinyu Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yao, R., Wang, H. & Han, J. Polyethylene glycol-supported ionic liquid as a highly efficient catalyst for the synthesis of propylene carbonate under mild conditions. Front. Chem. Sci. Eng. 6, 239–245 (2012). https://doi.org/10.1007/s11705-012-1297-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-012-1297-y

Keywords

Navigation