Influence of Na+ on the synthesis of silicalite-1 catalysts for use in the vapor phase Beckmann rearrangement of cyclohexanone oxime

Abstract

Silicalite-1 was hydrothermally synthesized in the presence of different concentrations of Na+ using tetrapropylammonium hydroxide (TPAOH) as a template. The synthesis was followed by a base treatment. The silicalite-1samples were characterized using X-ray diffraction, scanning electron microscopy, N2 adsorption, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and NH3 temperature-programmed desorption. The samples were used as catalysts for the vapor phase Beckmann rearrangement of cyclohexanone oxime. During the synthesis, the sodium ions were incorporated onto the silicalite-1 crystals, but were then removed by the base treatment. All the catalysts exhibited nearly complete conversion of cyclohexanone oxime to ɛ-caprolactam with selectivities grater than 95%. Addition of less than 2.5 mol-% Na+ (relative to TPAOH) did not influence the catalytic properties. However, for Na+ concentrations ⩽5 mol-%, the particle sizes of silicalite-1 increased and the catalytic activities decreased, which can be attributed to carbon deposition. The results in this work are of great importance for the polymer industry.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Hölderich W F, Röseler J, Heitmann G, Liebens A T. The use of zeolites in the synthesis of fine and intermediate chemicals. Catalysis Today, 1997, 37(4): 353–366

    Article  Google Scholar 

  2. 2.

    Sato H. Acidity control and catalysis of pentasil zeolites. Catalysis Reviews. Science and Engineering, 1997, 39(4): 395–424

    CAS  Article  Google Scholar 

  3. 3.

    Dahlhoff G, Niederer J P M, Hoelderich W F. e-Caprolactam: new by-product free synthesis routes. Catalysis Reviews, 2001, 43(4): 381–441

    CAS  Article  Google Scholar 

  4. 4.

    Mao D, Lu G, Chen Q. Vapor-phase Beckmann rearrangement of cyclohexanone oxime over B2O3 catalysts supported on TiO2-ZrO2 mixed oxide. Reaction Kinetics and Catalysis Letters 2002, 75(1): 75–80

    CAS  Article  Google Scholar 

  5. 5.

    Mao D S, Chen Q L, Lu G Z. Vapor-phase Beckmann rearrangement of cyclohexanone oxime over B2O3/TiO2-ZrO2. Applied Catalysis A, General, 2003, 244(2): 273–282

    CAS  Article  Google Scholar 

  6. 6.

    Xu B Q, Cheng S B, Zhang X, Zhu Q M. B2O3/ZrO2 for Beckmann rearrangement of cyclohexanone oxime: optimizing of the catalyst and reaction atmosphere. Catalysis Today, 2000, 63(2–4): 275–282

    CAS  Article  Google Scholar 

  7. 7.

    Heitmann G P, Dahlhoff G, Niederer J P M, Hölderich W F. Active sites of a [B]-ZSM-5 zeolite catalyst for the Beckmann rearrangement of cyclohexanone oxime to caprolactam. Journal of Catalysis, 2000, 194(1): 122–129

    CAS  Article  Google Scholar 

  8. 8.

    Heitmann G P, Dahlhoff G, Hölderich WF. Catalytically active sites for the Beckmann rearrangement of cyclohexanone oxime to ɛ-caprolactam. Journal of Catalysis, 1999, 186(1): 12–19

    CAS  Article  Google Scholar 

  9. 9.

    Kath H, Gläser R, Weitkamp J. Beckmann rearrangement of cyclohexanone oxime on MFI-type zeolites. Chemical Engineering & Technology, 2001, 24(2): 150–153

    CAS  Article  Google Scholar 

  10. 10.

    Takahashi T, Nasution M N A, Kai T. Effects of acid strength and micro pore size on ɛ-caprolactam selectivity and catalyst deactivation in vapor phase Beckmann rearrangement over acid solid catalysts. Applied Catalysis A, General, 2001, 210(1–2): 339–344

    CAS  Article  Google Scholar 

  11. 11.

    Ichihashi H, Kitamura M. Some aspects of the vapor phase Beckmann rearrangement for the production of ɛ-caprolactam over high silica MFI zeolites. Catalysis Today, 2002, 73(1–2): 23–28

    CAS  Article  Google Scholar 

  12. 12.

    Ichihashi H, Ishida M, Shiga A, Kitamura M, Suzuki T, Suenobu K, Sugita K. The catalysis of vapor-phase Beckmann rearrangement for the production of ɛ-caprolactam. Catalysis Surveys from Asia, 2003, 7(4): 261–270

    CAS  Article  Google Scholar 

  13. 13.

    Takahashi T, Kai T, Nakao E. Catalyst deactivation in the Beckmann rearrangement of cyclohexanone oxime over HZSM-5 zeolite and silica-alumina catalysts. Applied Catalysis A, General, 2004, 262(2): 137–142

    CAS  Article  Google Scholar 

  14. 14.

    Forni L, Fornasari G, Giordano G, Lucarelli C, Katovic A, Trifirò F, Perri C, Nagy J B. Vapor phase Beckmann rearrangement using high silica zeolite catalyst. Physical Chemistry Chemical Physics, 2004, 6: 1842–1847

    CAS  Article  Google Scholar 

  15. 15.

    Tao W C, Mao D S, Xia J C, Chen Q L, Hu Y. Effect of hydrofluoric acid post-treatments on catalytic performance of silicalite-1 for vapor-phase Beckmann rearrangement of cyclohexanone oxime. Chinese Journal of Catalysis, 2006, 27(3): 245–249

    CAS  Google Scholar 

  16. 16.

    Chang J C, Ko A N. Beckmann rearrangement of cyclohexanone oxime to ɛ-caprolactam using mesoporous molecular sieves Al-SBA-15. Reaction Kinetics and Catalysis Letters, 2004, 83(2): 283–290

    CAS  Article  Google Scholar 

  17. 17.

    Zhang Y, Wang Y, Bu Y, Mi Z, Wu W, Min E, Han S, Fu S. Beckmann rearrangement of cyclohexanone oxime over Hβ zeolite and Hβ zeolite-supported boride. Catalysis Communications, 2005, 6(1): 53–56

    Article  Google Scholar 

  18. 18.

    Bu Y F. MFI Zeolites for the vapor phase Beckmann rearrangement of cyclohexanone oxime. Dissertation for the Doctoral degree. Tianjin: Tianjin University, 2005 (in Chinese)

    Google Scholar 

  19. 19.

    Bu Y F, Wang Y Q, Zhang Y J, Wang L, Mi Z T, Wu W, Min E Z, Fu S B. Influences of ethylenediamine treatment of Silicalite-1 on the catalytic vapor-phase Beckmann rearrangement of cyclohexanone oxime. Catalysis Communications, 2007, 8(1): 16–20

    CAS  Article  Google Scholar 

  20. 20.

    Marthala V R R, Jiang Y, Huang J, Wang W, Gläser R, Hunger M. Beckmann rearrangement of 15N-cyclohexanone oxime on zeolites Silicalite-1, H-ZSM-5, and H-[B]ZSM-5 studied by solid-state NMR spectroscopy. Journal of the American Chemical Society, 2006, 128(46): 14812–14813

    CAS  Article  Google Scholar 

  21. 21.

    Bonelli B, Forni L, Aloise A, Nagy J B, Fornasari G, Garrone E, Gedeon A, Giordano G, Trifirò F. Beckmann rearrangement reaction: about the role of defect groups in high silica zeolite catalysts. Microporous and Mesoporous Materials, 2007, 101(1–2): 153–160

    CAS  Article  Google Scholar 

  22. 22.

    Zhang Y, Wang Y, Bu Y, Wang L, Mi Z, Wu W, Min E, Fu S, Zhu Z, He F, Han S. Synthesis of Ti-Hβ zeolites by liquid-solid isomorphous substitution and the catalytic properties in the vapor phase Beckmann rearrangement of cyclohexanone oxime. Reaction Kinetics and Catalysis Letters, 2007, 90(2): 365–372

    CAS  Article  Google Scholar 

  23. 23.

    Izumi Y, Ichihashi H, Shimazu Y, Kitamura M, Sato H. Development and industrialization of the vapor-phase Beckmann rearrangement process. Bulletin of the Chemical Society of Japan, 2007, 80(7): 1280–1287

    CAS  Article  Google Scholar 

  24. 24.

    Fernández A B, Lezcano-Gonzalez I, Boronat M, Blasco T, Corma A. NMR spectroscopy and theoretical calculations demonstrate the nature and location of active sites for the Beckmann rearrangement reaction in microporous materials. Journal of Catalysis, 2007, 249(1): 116–119

    Article  Google Scholar 

  25. 25.

    Marthala V R R, Rabl S, Huang J, Rezai S A S, Thomas B, Hunger M. In situ solid-state NMR investigations of the vapor-phase Beckmann rearrangement of 15N-cyclohexanone oxime on MFItype zeolites and mesoporous SBA-15 materials in the absence and presence of the additive 13C-methanol. Journal of Catalysis, 2008, 257(1): 134–141

    CAS  Article  Google Scholar 

  26. 26.

    Pavel C C, Palkovits R, Schüth F, Schmidt W. The benefit of mesopores in ETS-10 on the vapor-phase Beckmann rearrangement of cyclohexanone oxime. Journal of Catalysis, 2008, 254(1): 84–90

    CAS  Article  Google Scholar 

  27. 27.

    Zhang Y, Wang Y, Bu Y. Vapor phase Beckmann rearrangement of cyclohexanone oxime on Hβ-zeolites treated by ammonia. Microporous and Mesoporous Materials, 2008, 107(3): 247–251

    CAS  Article  Google Scholar 

  28. 28.

    Sirijaraensre J, Limtrakul J. Effect of the acidic strength on the vapor phase Beckmann rearrangement of cyclohexanone oxime over the MFI zeolite: an embedded ONIOM study. Physical Chemistry Chemical Physics, 2009, 11(3): 578–585

    CAS  Article  Google Scholar 

  29. 29.

    Conesa T D, Luque R, Campelo JM, Luna D, Marinas J M, Romero A A. Gas-phase Beckmann rearrangement of cyclododecanone oxime on Al,B-MCM-41 mesoporous materials. Journal of Materials Science, 2009, 44(24): 6741–6746

    CAS  Article  Google Scholar 

  30. 30.

    Reddy B M, Reddy G K, Rao K N, Katta L. Influence of alumina and titania on the structure and catalytic properties of sulfated zirconia: Beckmann rearrangement. Journal of Molecular Catalysis A Chemical, 2009, 306(1–2): 62–68

    CAS  Article  Google Scholar 

  31. 31.

    Palkovits R, Schmidt W, Ilhan Y, Erdem-Senatalar A, Schüth F. Crosslinked TS-1 as stable catalyst for the Beckmann rearrangement of cyclohexanone oxime. Microporous and Mesoporous Materials, 2009, 117(1–2): 228–232

    CAS  Article  Google Scholar 

  32. 32.

    Cesana A, Palmery S, Buzzoni R, Spanò G, Rivetti F, Carnelli L. Silicalite-1 deactivation in vapour phase Beckmann rearrangement of cyclohexanone oxime to caprolactam. Catalysis Today, 2010, 154(3–4): 264–270

    CAS  Article  Google Scholar 

  33. 33.

    Bordoloi A, Halligudi S B. Catalytic properties of WOx/SBA-15 for vapor-phase Beckmann rearrangement of cyclohexanone oxime. Applied Catalysis A, General, 2010, 379(1–2): 141–147

    CAS  Article  Google Scholar 

  34. 34.

    Zhang D, Wang R, Yang X, Yao W. Vapor-phase Beckmann rearrangement of cyclohexanone oxime over phosphorus modified Si-MCM-41. Reaction Kinetics, Mechanisms and Catalysis, 2010, 101(2): 455–463

    CAS  Article  Google Scholar 

  35. 35.

    Persson A E, Schoeman B J, Sterte J, Otterstedt J E. Synthesis of stable suspensions of discrete colloidal zeolite (Na, TPA)ZSM-5 crystals. Zeolites, 1995, 15(7): 611–619

    CAS  Article  Google Scholar 

  36. 36.

    Van Grieken R, Sotelo J L, Menéndez J M, Melero J A. Anomalous crystallization mechanism in the synthesis of nanocrystalline ZSM-5. Microporous and Mesoporous Materials, 2000, 39(1–2): 135–147

    Article  Google Scholar 

  37. 37.

    Nam H J, Amemiya T, Murabayashi M, Itoh K. The influence of Na+ on the crystallite size of TiO2 and the photocatalytic activity. Research on Chemical Intermediates, 2005, 31(4): 365–370

    CAS  Article  Google Scholar 

  38. 38.

    Flanigen E M, Bennett J M, Grose R W, Cohen J P, Patton R L, Kirchner R M, Smith J V. Silicalite, a new hydrophobic crystalline silica molecular sieve. Nature, 1978, 271(5645): 512–516

    CAS  Article  Google Scholar 

  39. 39.

    Feng F, Jr Balkus K J. Recrystallization of layered silicates to silicalite-1. Microporous and Mesoporous Materials, 2004, 69(1–2): 85–96

    CAS  Article  Google Scholar 

  40. 40.

    Choudhary V R, Akolekar D B. Crystallization of silicalite-factors affecting its structure, crystal size and morphology. Materials Chemistry and Physics, 1988, 20(4–5): 299–308

    CAS  Article  Google Scholar 

  41. 41.

    Matsumura Y, Hashimoto K, Kobayashi H, Yoshida S. The role of sodium ions as adsorption sites in silicalite-1. Journal of the Chemical Society, Faraday Transactions, 1990, 86(3): 561–565

    CAS  Article  Google Scholar 

  42. 42.

    Butler J D, Poles T C. Beckmann rearrangement of cyclopentanone oxime catalysed by decationated zeolite. Journal of the Chemical Society, Perkin Transactions, 1973, 2: 1262–1266

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yaquan Wang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yang, R., Meng, F., Wang, X. et al. Influence of Na+ on the synthesis of silicalite-1 catalysts for use in the vapor phase Beckmann rearrangement of cyclohexanone oxime. Front. Chem. Sci. Eng. 5, 401–408 (2011). https://doi.org/10.1007/s11705-011-1129-5

Download citation

Keywords

  • silicalite-1
  • cyclohexanone oxime
  • vapor phase Beckmann rearrangement
  • ɛ-caprolactam