Skip to main content

Progress on cleaner production of vinyl chloride monomers over non-mercury catalysts

Abstract

Polyvinyl chloride (PVC) has become the third most used plastic after polyethylene and polypropylene and the worldwide demand continues to increase. Polyvinyl chloride is produced by polymerization of the vinyl chloride monomer (VCM), which is manufactured industrially via the dehydrochlorination of dichloroethane or the hydrochlorination of acetylene. Currently PVC production through the acetylene hydrochlorination method accounts for about 70% of the total PVC production capacity in China. However, the industrial production of VCM utilizes a mercuric chloride catalyst to promote the reaction of acetylene and hydrogen chloride. During the hydrochlorination, the highly toxic mercuric chloride tends to sublime, resulting in the deactivation of the catalyst and also in severe environmental pollution problems. Hence, for China, it is necessary to explore environmental friendly non-mercury catalysts for acetylene hydrochlorination as well as high efficiency novel reactors, with the aim of sustainable PVC production via the acetylene-based method. This paper presents a review of non-mercury heterogeneous and homogeneous catalysts as well as reactor designs, and recommends future work for developing cleaner processes to produce VCM over nonmercury catalysts with high activity and long stability.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Ebner Martin. Ceresana research releases new comprehensive PVC market study. Newswire Today, http://www.newswiretoday.com/news/42864/, 2008-11-18

  2. 2.

    Jiang W W, Huo Y P, Yang Q, Luo Q, Li J J, Luo Y, Sun Y G. Research progress in mercury-free catalysts for hydrochiorination of acetylene. Polyvinyl Chloride, 2009, 37: 1–4 (in Chinese)

    Google Scholar 

  3. 3.

    Wei F, Luo G H, Wei X B, Li X G, Qian W Z, Jin Y. CN Patent, 101670293A, 2010-03-17

  4. 4.

    Bing J L, Huang Z M. Polyvinyl Chloride (PVC) Process Technology. Beijing: Chemical Industry Press, 2008, 59 (in Chinese)

    Google Scholar 

  5. 5.

    Mitchenko S A, Khomutov E V, Shubin A A, Shul’ga Y M. Catalytic hydrochlorination of acetylene by gaseous HCl on the surface of mechanically pre-activated K2PtCl6 salt. Journal of Molecular Catalysis A Chemical, 2004, 212(1–2): 345–352

    CAS  Article  Google Scholar 

  6. 6.

    Hutchings G J. Gold catalysis in chemical processing. Catalysis Today, 2002, 72(1–2): 11–17

    CAS  Article  Google Scholar 

  7. 7.

    Lai C W, Jiang W W, Luo Q, Yang Q, Li J J. Study of the catalytic hydrochlorination of acetylene with nonmercuric catalytic systems. Sichuan Chemical Industry, 2007, 10: 8–11 (in Chinese)

    Google Scholar 

  8. 8.

    Hutchings G. Vapor phase hydrochlorination of acetylene: correlation of catalyticn activity of supported metal chloride catalysts. Journal of Catalysis, 1985, 96(1): 292–295

    CAS  Article  Google Scholar 

  9. 9.

    Nkosi B, Coville N J, Hutchings G J. Reactivation of a supported gold catalyst for acetylene hydrochlorination. Journal of the Chemical Society. Chemical Communications, 1988, (1): 71–72

    Article  Google Scholar 

  10. 10.

    Nkosi B, Coville N J, Hutchings G J. Vapour phase hydrochlorination of acetylene with group VIII and IB metal chloride catalysts. Applied Catalysis, 1988, 43(1): 33–39

    CAS  Article  Google Scholar 

  11. 11.

    Nkosi B, Conville N J, Hutchings G J. Hydrochlorination of actylene using gold catalysts: a study of catalyst deactivation. Journal of Catalysis, 1991, 128(2): 366–377

    CAS  Article  Google Scholar 

  12. 12.

    Hutchings G J, Haruta M. A golden age of catalysis: a perspective. Applied Catalysis, A, 2005, 291: 2–5

    CAS  Article  Google Scholar 

  13. 13.

    Nkosi B, Adams M D, Coville N J, Hutchings G J. Hydrochlorination of acetylene using carbon-supported gold catalysts: a study of catalyst reactivation. Journal of Catalysis, 1991, 128(2): 378–386

    CAS  Article  Google Scholar 

  14. 14.

    Conte M, Carley A F, Hutchings G J. Reactivation of a carbonsupported gold catalyst for the hydrochlorination of acetylene. Catalysis Letters, 2008, 124(3–4): 165–167

    CAS  Article  Google Scholar 

  15. 15.

    Conte M, Carley A F, Heirene C, Willock D J, Johnston P, Herzing A A, Kiely C J, Hutchings G J. Hydrochlorination of acetylene using a supported gold catalyst: a study of the reaction mechanism. Journal of Catalysis, 2007, 250(2): 231–239

    CAS  Article  Google Scholar 

  16. 16.

    Mitchenko S A, Ananikov V P, Beletskaya I P. Mechanoactivation of acetylene hydrochlorination in the presence of K2PtCl6. Zhurnal Organicheskoi Khimii, 1998, 34: 1859–1860

    Google Scholar 

  17. 17.

    Mitchenko S A. Acetylene hydrochlorination by gaseous hydrogen chloride on the surface of mechanically activated K2PtCl6 salt. Kinetics and Catalysis, 1998, 39: 859–862

    CAS  Google Scholar 

  18. 18.

    Mitchenko S A, Krasnyakova T V, Mitchenko R S, Korduban A N. Acetylene catalytic hydrochlorination over powder catalyst prepared by pre-milling of K2PtCl4 salt. Journal of Molecular Catalysis A: Chemical, 2007, 275(1–2): 101–108

    CAS  Article  Google Scholar 

  19. 19.

    Strebelle M, Devos A. US Patent, 5254777, 1993-10-19

  20. 20.

    Song Q L, Wang S J, Shen B X, Zhao J G. Palladium-based catalysts for the hydrochlorination of acetylene: reasons for deactivation and its regeneration. Petroleum Science and Technology, 2010, 28(18): 1825–1833

    CAS  Article  Google Scholar 

  21. 21.

    Wang S J, Shen B X, Song Q L. Kinetics of acetylene hydrochlorination over bimetallic Au-Cu/C catalyst. Catalysis Letters, 2010, 134(1–2): 102–109

    CAS  Article  Google Scholar 

  22. 22.

    Panova S A, Shestakov K G, Temkin N O. Supported liquid-phase rhodium catalyst for acetylene hydrochlorination. Journal of the Chemical Society, Chemical Communications, 1994, (8): 977–977

    Article  Google Scholar 

  23. 23.

    Okuda N, Ueha Y, Okura K, Hisagai Y. JP Patent, 5213610A, 1993-08-24

  24. 24.

    Deng G C, Wu B X, Li T S. The reaearch on solid-liqiud catalyst using for the preparation of vinyl chloride from acetylene method. Polyvinyl Chloride, 1994, 6: 5–9 (in Chinese)

    Google Scholar 

  25. 25.

    Conte M, Carley A F, Attard G, Herzing A A, Kiely C J, Hutchings G J. Hydrochlorination of acetylene using supported bimetallic Aubased catalysts. Journal of Catalysis, 2008, 257(1): 190–198

    CAS  Article  Google Scholar 

  26. 26.

    Wang S J, Shen B X, Song Q L. Kinetics of acetylene hydrochlorination over bimetallic Au-Cu/C catalyst. Catalysis Letters, 2010, 134(1–2): 102–109

    CAS  Article  Google Scholar 

  27. 27.

    Jiang W W, Yang Q, Luo Q, Li J J. CN Patent, 101249451A, 2008-08-27 (in Chinese)

  28. 28.

    Yu Z Y. CN Patent, 101716528A, 2010-06-02 (in Chinese)

  29. 29.

    Smith D M, Walsh P M, Slager T L. Studies of silica-supported metal chloride catalysts for the vapor-phase hydrochlorination of acetylene. Journal of Catalysis, 1968, 11(2): 113–130

    CAS  Article  Google Scholar 

  30. 30.

    Conte M, Davies T, Carley A F, Herzing A A, Kiely C J, Hutchings G J. Selective formation of chloroethane by the hydrochlorination of ethene using zinc catalysts. Journal of Catalysis, 2007, 252(1): 23–29

    CAS  Article  Google Scholar 

  31. 31.

    Enache D I, Edwards J K, Landon P, Solsona-Espriu B, Carley A F, Herzing A A, Watanabe M, Kiely C J, Knight D W, Hutchings G J. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2. Science, 2006, 311(5759): 362–365

    CAS  Article  Google Scholar 

  32. 32.

    Hayashi T, Tanaka K, Haruta M. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. Journal of Catalysis, 1998, 178(2): 566–575

    CAS  Article  Google Scholar 

  33. 33.

    Okazaki K, Morikawa Y, Tanaka S, Tanaka K, Kohyama M. Electronic structures of Au on TiO2(110) by first-principles calculations. Physical Review B: Condensed Matter and Materials Physics, 2004, 69(23): 235404

    Article  CAS  Google Scholar 

  34. 34.

    Cunningham D A H, Vogel W, Haruta M. Negative activation energies in CO oxidation over an icosahedral Au/Mg(OH)2 catalyst. Catalysis Letters, 1999, 63(1/2): 43–47

    CAS  Article  Google Scholar 

  35. 35.

    Bailie J E, Abdullah H A, Anderson J A, Rochester C H, Richardson N V, Hodge N, Zhang J G, Burrows A, Kiely C J, Hutchings G J. Hydrogenation of but-2-enal over supported Au/ZnO catalysts. Physical Chemistry Chemical Physics, 2001, 3(18): 4113–4121

    CAS  Article  Google Scholar 

  36. 36.

    Akita T, Tanaka K, Kohyama M, Haruta M. Analytical TEM study on structural changes of Au particles on cerium oxide using a heating holder. Catalysis Today, 2007, 122(3-4): 233–238

    CAS  Article  Google Scholar 

  37. 37.

    Kellera N, Pham-Huu C, Ledoux M J, Estournes C, Ehret G. Preparation and characterization of SiC microtubes. Applied Catalysis, A, 1999, 187(2): 255–268

    Article  Google Scholar 

  38. 38.

    Julius A N. US Patent, 1812542, 1931-06-30.

  39. 39.

    Granville A P. US Patent, 1934324, 1933-11-07

  40. 40.

    Armin J. US Patent, 3113158, 1963-12-03

  41. 41.

    Thelen G, Bartels H, Droste W. CN Patent, 1037501A, 1989-11-29

  42. 42.

    Hutchings G J. Reactions of alkynes using heterogeneous and homogeneous cationic gold catalysts. Topics in Catalysis, 2008, 48(1–4): 55–59

    CAS  Article  Google Scholar 

  43. 43.

    Hutchings G J. Catalysis by gold. Catalysis Today, 2005, 100(1–2): 55–61

    CAS  Article  Google Scholar 

  44. 44.

    Hutchings G J, Hall M S, Carley A F, Landon P, Solsona B E, Kiely C J, Herzing A, Makkee M, Moulijin J A, Overweg A, Fierro-Gonzalez J C, Guzman J, Gates B C. Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxide-supported gold. Journal of Catalysis, 2006, 242(1): 71–81

    CAS  Article  Google Scholar 

  45. 45.

    Wei F, Wei X B, Luo G H, Qian W Z, Jin Y. CN Patent, 101497046A, 2009-08-05

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jinli Zhang.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zhang, J., Liu, N., Li, W. et al. Progress on cleaner production of vinyl chloride monomers over non-mercury catalysts. Front. Chem. Sci. Eng. 5, 514–520 (2011). https://doi.org/10.1007/s11705-011-1114-z

Download citation

Keywords

  • polyvinyl chloride
  • vinyl chloride monomer
  • acetylene hydrochlorination
  • non-mercury catalysts
  • green chemical process