Abstract
Polyvinyl chloride (PVC) has become the third most used plastic after polyethylene and polypropylene and the worldwide demand continues to increase. Polyvinyl chloride is produced by polymerization of the vinyl chloride monomer (VCM), which is manufactured industrially via the dehydrochlorination of dichloroethane or the hydrochlorination of acetylene. Currently PVC production through the acetylene hydrochlorination method accounts for about 70% of the total PVC production capacity in China. However, the industrial production of VCM utilizes a mercuric chloride catalyst to promote the reaction of acetylene and hydrogen chloride. During the hydrochlorination, the highly toxic mercuric chloride tends to sublime, resulting in the deactivation of the catalyst and also in severe environmental pollution problems. Hence, for China, it is necessary to explore environmental friendly non-mercury catalysts for acetylene hydrochlorination as well as high efficiency novel reactors, with the aim of sustainable PVC production via the acetylene-based method. This paper presents a review of non-mercury heterogeneous and homogeneous catalysts as well as reactor designs, and recommends future work for developing cleaner processes to produce VCM over nonmercury catalysts with high activity and long stability.
This is a preview of subscription content, access via your institution.
References
Ebner Martin. Ceresana research releases new comprehensive PVC market study. Newswire Today, http://www.newswiretoday.com/news/42864/, 2008-11-18
Jiang W W, Huo Y P, Yang Q, Luo Q, Li J J, Luo Y, Sun Y G. Research progress in mercury-free catalysts for hydrochiorination of acetylene. Polyvinyl Chloride, 2009, 37: 1–4 (in Chinese)
Wei F, Luo G H, Wei X B, Li X G, Qian W Z, Jin Y. CN Patent, 101670293A, 2010-03-17
Bing J L, Huang Z M. Polyvinyl Chloride (PVC) Process Technology. Beijing: Chemical Industry Press, 2008, 59 (in Chinese)
Mitchenko S A, Khomutov E V, Shubin A A, Shul’ga Y M. Catalytic hydrochlorination of acetylene by gaseous HCl on the surface of mechanically pre-activated K2PtCl6 salt. Journal of Molecular Catalysis A Chemical, 2004, 212(1–2): 345–352
Hutchings G J. Gold catalysis in chemical processing. Catalysis Today, 2002, 72(1–2): 11–17
Lai C W, Jiang W W, Luo Q, Yang Q, Li J J. Study of the catalytic hydrochlorination of acetylene with nonmercuric catalytic systems. Sichuan Chemical Industry, 2007, 10: 8–11 (in Chinese)
Hutchings G. Vapor phase hydrochlorination of acetylene: correlation of catalyticn activity of supported metal chloride catalysts. Journal of Catalysis, 1985, 96(1): 292–295
Nkosi B, Coville N J, Hutchings G J. Reactivation of a supported gold catalyst for acetylene hydrochlorination. Journal of the Chemical Society. Chemical Communications, 1988, (1): 71–72
Nkosi B, Coville N J, Hutchings G J. Vapour phase hydrochlorination of acetylene with group VIII and IB metal chloride catalysts. Applied Catalysis, 1988, 43(1): 33–39
Nkosi B, Conville N J, Hutchings G J. Hydrochlorination of actylene using gold catalysts: a study of catalyst deactivation. Journal of Catalysis, 1991, 128(2): 366–377
Hutchings G J, Haruta M. A golden age of catalysis: a perspective. Applied Catalysis, A, 2005, 291: 2–5
Nkosi B, Adams M D, Coville N J, Hutchings G J. Hydrochlorination of acetylene using carbon-supported gold catalysts: a study of catalyst reactivation. Journal of Catalysis, 1991, 128(2): 378–386
Conte M, Carley A F, Hutchings G J. Reactivation of a carbonsupported gold catalyst for the hydrochlorination of acetylene. Catalysis Letters, 2008, 124(3–4): 165–167
Conte M, Carley A F, Heirene C, Willock D J, Johnston P, Herzing A A, Kiely C J, Hutchings G J. Hydrochlorination of acetylene using a supported gold catalyst: a study of the reaction mechanism. Journal of Catalysis, 2007, 250(2): 231–239
Mitchenko S A, Ananikov V P, Beletskaya I P. Mechanoactivation of acetylene hydrochlorination in the presence of K2PtCl6. Zhurnal Organicheskoi Khimii, 1998, 34: 1859–1860
Mitchenko S A. Acetylene hydrochlorination by gaseous hydrogen chloride on the surface of mechanically activated K2PtCl6 salt. Kinetics and Catalysis, 1998, 39: 859–862
Mitchenko S A, Krasnyakova T V, Mitchenko R S, Korduban A N. Acetylene catalytic hydrochlorination over powder catalyst prepared by pre-milling of K2PtCl4 salt. Journal of Molecular Catalysis A: Chemical, 2007, 275(1–2): 101–108
Strebelle M, Devos A. US Patent, 5254777, 1993-10-19
Song Q L, Wang S J, Shen B X, Zhao J G. Palladium-based catalysts for the hydrochlorination of acetylene: reasons for deactivation and its regeneration. Petroleum Science and Technology, 2010, 28(18): 1825–1833
Wang S J, Shen B X, Song Q L. Kinetics of acetylene hydrochlorination over bimetallic Au-Cu/C catalyst. Catalysis Letters, 2010, 134(1–2): 102–109
Panova S A, Shestakov K G, Temkin N O. Supported liquid-phase rhodium catalyst for acetylene hydrochlorination. Journal of the Chemical Society, Chemical Communications, 1994, (8): 977–977
Okuda N, Ueha Y, Okura K, Hisagai Y. JP Patent, 5213610A, 1993-08-24
Deng G C, Wu B X, Li T S. The reaearch on solid-liqiud catalyst using for the preparation of vinyl chloride from acetylene method. Polyvinyl Chloride, 1994, 6: 5–9 (in Chinese)
Conte M, Carley A F, Attard G, Herzing A A, Kiely C J, Hutchings G J. Hydrochlorination of acetylene using supported bimetallic Aubased catalysts. Journal of Catalysis, 2008, 257(1): 190–198
Wang S J, Shen B X, Song Q L. Kinetics of acetylene hydrochlorination over bimetallic Au-Cu/C catalyst. Catalysis Letters, 2010, 134(1–2): 102–109
Jiang W W, Yang Q, Luo Q, Li J J. CN Patent, 101249451A, 2008-08-27 (in Chinese)
Yu Z Y. CN Patent, 101716528A, 2010-06-02 (in Chinese)
Smith D M, Walsh P M, Slager T L. Studies of silica-supported metal chloride catalysts for the vapor-phase hydrochlorination of acetylene. Journal of Catalysis, 1968, 11(2): 113–130
Conte M, Davies T, Carley A F, Herzing A A, Kiely C J, Hutchings G J. Selective formation of chloroethane by the hydrochlorination of ethene using zinc catalysts. Journal of Catalysis, 2007, 252(1): 23–29
Enache D I, Edwards J K, Landon P, Solsona-Espriu B, Carley A F, Herzing A A, Watanabe M, Kiely C J, Knight D W, Hutchings G J. Solvent-free oxidation of primary alcohols to aldehydes using Au-Pd/TiO2. Science, 2006, 311(5759): 362–365
Hayashi T, Tanaka K, Haruta M. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. Journal of Catalysis, 1998, 178(2): 566–575
Okazaki K, Morikawa Y, Tanaka S, Tanaka K, Kohyama M. Electronic structures of Au on TiO2(110) by first-principles calculations. Physical Review B: Condensed Matter and Materials Physics, 2004, 69(23): 235404
Cunningham D A H, Vogel W, Haruta M. Negative activation energies in CO oxidation over an icosahedral Au/Mg(OH)2 catalyst. Catalysis Letters, 1999, 63(1/2): 43–47
Bailie J E, Abdullah H A, Anderson J A, Rochester C H, Richardson N V, Hodge N, Zhang J G, Burrows A, Kiely C J, Hutchings G J. Hydrogenation of but-2-enal over supported Au/ZnO catalysts. Physical Chemistry Chemical Physics, 2001, 3(18): 4113–4121
Akita T, Tanaka K, Kohyama M, Haruta M. Analytical TEM study on structural changes of Au particles on cerium oxide using a heating holder. Catalysis Today, 2007, 122(3-4): 233–238
Kellera N, Pham-Huu C, Ledoux M J, Estournes C, Ehret G. Preparation and characterization of SiC microtubes. Applied Catalysis, A, 1999, 187(2): 255–268
Julius A N. US Patent, 1812542, 1931-06-30.
Granville A P. US Patent, 1934324, 1933-11-07
Armin J. US Patent, 3113158, 1963-12-03
Thelen G, Bartels H, Droste W. CN Patent, 1037501A, 1989-11-29
Hutchings G J. Reactions of alkynes using heterogeneous and homogeneous cationic gold catalysts. Topics in Catalysis, 2008, 48(1–4): 55–59
Hutchings G J. Catalysis by gold. Catalysis Today, 2005, 100(1–2): 55–61
Hutchings G J, Hall M S, Carley A F, Landon P, Solsona B E, Kiely C J, Herzing A, Makkee M, Moulijin J A, Overweg A, Fierro-Gonzalez J C, Guzman J, Gates B C. Role of gold cations in the oxidation of carbon monoxide catalyzed by iron oxide-supported gold. Journal of Catalysis, 2006, 242(1): 71–81
Wei F, Wei X B, Luo G H, Qian W Z, Jin Y. CN Patent, 101497046A, 2009-08-05
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, J., Liu, N., Li, W. et al. Progress on cleaner production of vinyl chloride monomers over non-mercury catalysts. Front. Chem. Sci. Eng. 5, 514–520 (2011). https://doi.org/10.1007/s11705-011-1114-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11705-011-1114-z
Keywords
- polyvinyl chloride
- vinyl chloride monomer
- acetylene hydrochlorination
- non-mercury catalysts
- green chemical process