Skip to main content
Log in

Preparation of P2O5-SiO2 hollow microspheres in the presence of phosphoric acid

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Silica hollow microspheres containing phosphorous have been prepared by a sol-gel/emulsion method which uses tetraethoxysilane (TEOS) as the precursor for the SiO2 and phosphoric acid (H3PO4) as the precursor for P2O5. The hollow structure forms an emulsion system which is composed of an oil phase (kerosene, sorbitan monooleate (Span 80)) and an aqueous phase (a viscous sol solution of ethanol, TEOS and H3PO4). Some of the phosphorous remains in the final silica shell structure even after calcination at 650°C. The hollow structure of the P2O5-SiO2 (silicophosphate) was characterized by X-ray diffraction (XRD), polarized optical microscopy (POM), scanning electron microscopy (SEM), nitrogen adsorption measurement and Fourier transform infrared spectroscopy (FTIR).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Tung S P, Hwang B J. High proton conductive glass electrolyte synthesized by an accelerated sol-gel process with water/vapor management. Journal of Membrane Science, 2004, 241(2): 315–323

    Article  CAS  Google Scholar 

  2. Tsvetkova I N, Shilova O A, Voronkov M G, Gomza Y P, Sukhoy K M. Sol-gel synthesis and investigation of proton-conducting hybrid organic-inorganic silicophosphate materials. Glass Physics and Chemistry, 2008, 34(1): 68–76

    Article  CAS  Google Scholar 

  3. Uma T, Nogami M. Synthesis and characterization of P2O5-SiO2-X (X = aphosphotungstic acid) glasses as electrolyte for low temperature H2/O2 fuel cell application. Journal of Membrane Science, 2006, 280(1–2): 744–751

    Article  CAS  Google Scholar 

  4. Hench L L. Bioceramics: from concept to clinic. Journal of the American Ceramic Society, 1991, 74(7): 1487–1510

    Article  CAS  Google Scholar 

  5. Federman S R, Costa V C, Vasconcelos D C L, Vasconcelos W L. Sol-Gel SiO2-CaO-P2O5 biofilm with surface engineered for medical application. Materials Research, 2007, 10(2): 177–181

    Article  CAS  Google Scholar 

  6. Pope E J A, Mackenzie J D. Sol-gel processing of silica: II. The role of the catalyst. Journal of Non-Crystalline Solids, 1986, 87(1–2): 185–198

    Article  CAS  Google Scholar 

  7. Vasiliu I, Gartner M, Anastasescu M, Todan L, Predoana L, Elisa M, Negrila C, Ungureanu F, Logofatu C, Moldovan A, Birjega R, Zaharescu M. Structural and optical properties of the SiO2-P2O5 films obtained by sol-gel method. Thin Solid Films, 2007, 515(16): 6601–6605

    Article  CAS  Google Scholar 

  8. Fernández-Lorenzo C, Esquivias L, Barboux P, Maquet J, Taulelle F. Sol-gel synthesis of SiO2-P2O5 glasses. Journal of Non-Crystalline Solids, 1994, 176(2–3): 189–199

    Article  Google Scholar 

  9. Massiot Ph, Centeno M A, Carrizosa I, Odriozola J A. Thermal evolution of sol-gel-obtained phosphosilicate solids (SiPO). Journal of Non-Crystalline Solids, 2001, 292(1–3): 158–166

    Article  CAS  Google Scholar 

  10. Maki Y, Sato K, Isobe A, Iwasa N, Fujita S, Shimokawabe M, Takezawa N. Structures of H3PO4/SiO2 catalysts and catalytic performance in the hydration of ethene. Appl Catal A: General, 1998, 170(2): 269–275

    Article  CAS  Google Scholar 

  11. Elisa M, Sava B A, Volceanov A, Monteiro R C C, Alves E, Franco N, Costa Oliveira F A Fernandes H Ferro M C. Structural and thermal characterization of SiO2-P2O5 sol-gel powders upon annealing at high temperatures. Journal of Non-Crystalline Solids, 2010, 356(9–10): 495–501

    Article  CAS  Google Scholar 

  12. Kang E S, Takahashi M, Tokuda Y, Yoko T. Template-free magnesium oxide hollow sphere inclusion in organic-inorganic hybrid films via sol-gel reaction. Langmuir, 2006, 22(12): 5220–5223

    Article  CAS  Google Scholar 

  13. Huang J, Xie Y, Li B, Liu Y, Qian Y, Zhang S. In-situ sourcetemplate-interface reaction route to semiconductor CdS submicrometer hollow sphere. Advanced Materials (Deerfield Beach, Fla.), 2000, 12(11): 808–811

    CAS  Google Scholar 

  14. Lin H P, Liu S B, Mou C Y, Tang C Y. Hollow spheres of MCM-41 aluminosilicate with pinholes. Chemical Communications (Cambridge), 2001, 19(19): 1970–1971

    Article  Google Scholar 

  15. Biggs S, Sakai K, Addison T, Schmid A, Armes S P, Vamvakaki M, Bütün V, Webber G. Layer-by-layer formation of smart particle coatings using oppositely charged block copolymer micelles. Advanced Materials (Deerfield Beach, Fla.), 2007, 19(2): 247–250

    CAS  Google Scholar 

  16. Shchukin D G, Gorin D A, Möhwald H. Ultrasonically induced opening of polyelectrolyte microcontainers. Langmuir, 2006, 22 (17): 7400–7404

    Article  CAS  Google Scholar 

  17. Dai Z, Zhang J, Bao J, Huang X, Mo X. Facile synthesis of high-quality nano-sized CdS hollow spheres and their application in electrogenerated chemiluminescence sensing. Journal of Materials Chemistry, 2007, 17(11): 1087–1093

    Article  CAS  Google Scholar 

  18. Massiot Ph, Centeno M A, Gouriou M, Domínguez M I, Odriozola J A. Sol-gel obtained silicophosphates as materials to retain caesium at high temperatures. Journal of Materials Chemistry, 2003, 13: 67–74

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Xie.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Xie, F., Hua, D. et al. Preparation of P2O5-SiO2 hollow microspheres in the presence of phosphoric acid. Front. Chem. Sci. Eng. 5, 314–317 (2011). https://doi.org/10.1007/s11705-010-0573-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-010-0573-y

Keywords

Navigation