Skip to main content
Log in

Carbon dioxide: a renewable feedstock for the synthesis of fine and bulk chemicals

  • Review Article
  • Published:
Frontiers of Chemical Engineering in China Aims and scope Submit manuscript

Abstract

The syntheses of carbon dioxide (CO2) based industrially important chemicals have gained considerable interest in view of the sustainable chemistry and “green chemistry” concepts. In this review, recent developments in the chemical fixation of CO2 to valuable chemicals are discussed. The synthesis of five-member cyclic carbonates via, cycloaddition of CO2 to epoxides is one of the promising reactions replacing the existing poisonous phosgene-based synthetic route. This review focuses on the synthesis of cyclic carbonates, vinyl carbamates, and quinazoline-2,4(1H,3H)-diones via reaction of CO2 and epoxide, amines/phenyl acetylene, 2-aminobenzinitrile and other chemicals. Direct synthesis of dimethyl carbonate, 1,3-disubstituted urea and 2-oxazolidinones/2-imidazolidinones have limitations at present because of the reaction equilibrium and chemical inertness of CO2. The preferred alternatives for their synthesis like transesterification of ethylene carbonate with methanol, transamination of ethylene carbonate with primary amine and transamination reaction of ethylene carbonate with diamines/β-aminoalcohols are discussed. These methodologies offer marked improvements for greener chemical fixation of CO2 in to industrially important chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jessop P G, Ikariya T, and Noyori R. Homogeneous catalysis in supercritical fluids. Science, 1995, 269: 1065–1069

    CAS  Google Scholar 

  2. Aresta M, Quaranta E. Carbon dioxide: a substitute for phosgene. Chemtech, 1997, 32–40

  3. Shaikh A A, Shivaram S. Organic carbonates. Chem Rev, 1995, 96: 951–957

    Google Scholar 

  4. Sakakura S, Choi J C, Yasuda H. Transformation of carbon dioxide. Chem Rev, 2007, 107: 2365–2387

    CAS  Google Scholar 

  5. Pierre B, Dominque M, Dominique N. Reaction of carbon dioxide with carbon carbon bond formation catalyzed by transition-metal complexes. Chem Rev, 1988, 88: 747–764

    Google Scholar 

  6. Aresta M. Recovery and Utilisation of Carbon Dioxide. EU-report, 2001

  7. Shi F, Deng Y Q, Sima T L, Peng J J, Gu Y L, Qiao B T. Alternatives to phosgene and carbon monoxide: Synthesis of symmetric urea derivatives with carbon dioxide in ionic liquids. Angew Chem Int Ed, 2003, 42: 3257–3260

    CAS  Google Scholar 

  8. Kosugi Y, Rahim M A, Takahashi K, Imaoka Y, Kitayama M. Carboxylation of alkali metal phenoxide with carbon dioxide at terrestrial temperature. Appl Organomet Chem, 2000, 14: 841–843

    CAS  Google Scholar 

  9. Lindsey A S, Jeskey H. The Kolbe-schmitt reaction. Chem Rev, 1957, 57: 583–620

    CAS  Google Scholar 

  10. Darensbourg D J, Yarbrough J C. Mechanistic aspects of the copolymerization reaction of carbon dioxide and epoxides, using a chiral salen chromium chloride catalyst. J Am Chem Soc, 2002, 124: 6335–6342

    CAS  Google Scholar 

  11. Inoue S, Koinuma H, Tsuruta T. Copolymerization of carbon dioxide and epoxide. J Polym Sci, Part B: Polym Lett, 1969, 7: 287–292

    CAS  Google Scholar 

  12. Inoue S, Koinuma H, Tsuruta T. Copolymerization of carbon dioxide and epoxide with organometallic compounds. Makromol Chem, 1969, 130: 210–220

    CAS  Google Scholar 

  13. Luinstra G A, Haas G R, Molnar F, Bernhart V, Eberhardt R, Rieger B. On the formation of aliphatic polycarbonates from epoxides with chromium (III) and aluminum(III) metal-salen complexes. Chem Eur J, 2005, 11: 6298–6314

    CAS  Google Scholar 

  14. Chaturvedi D, Ray S. Versatile use of carbon dioxide in the synthesis of carbamates. Monatsh Chem, 2006, 137: 127–145

    CAS  Google Scholar 

  15. Rohr M, Geyer C, Wandeler R, Schneider M S, Murphy E F, Baiker A. Solvent-free ruthenium-catalysed vinylcarbamate synthesis from phenylacetylene and diethylamine in supercritical carbon dioxide. Green Chem, 2001, 3: 123–125

    CAS  Google Scholar 

  16. Shi M, Nicholas K M. Palladium-catalyzed carboxylation of allyl stannanes. J Am Chem Soc, 1997, 119: 5057–5058

    CAS  Google Scholar 

  17. Shi D X, Feng Y Q, Zhong S H. Photocatalytic conversion of CH4 and CO2 to oxygenated compounds over Cu/CdS-TiO2/SiO2 catalyst. Catal Today, 2004, 98: 505–509

    CAS  Google Scholar 

  18. Wilcox E M, G, Roberts W, Spivey J J. Direct catalytic formation of acetic acid from CO2 and methane. Catal Today, 2003, 88: 83–90

    CAS  Google Scholar 

  19. Sakakura T, Choi J, Saito C Y, Sako T. Synthesis of dimethyl carbonate from carbon dioxide: Catalysis and mechanism. Polyhedron, 2000, 19: 573–576

    CAS  Google Scholar 

  20. Iwakabe K, Nakaiwa M, Sakakura T, Choi J C, Yasuda H, Takahashi T, Ooshima Y. Reaction rate of the production of dimethyl carbonate directly from the supercritical CO2 and methanol J Chem Eng Jpn, 2005, 38: 1020–1024

    CAS  Google Scholar 

  21. Aresta M, Dibenedetto A, Fracchiolla E, Giannoccaro P, Pastore C, Papai I, Schubert G. Mechanism of formation of organic carbonates from aliphatic alcohols and carbon dioxide under mild conditions promoted by carbodiimides. DFT calculation and experimental study. J Org Chem, 2005, 70: 6177–6186

    CAS  Google Scholar 

  22. Tomishige K, Sakaihori T, Ikeda Y, Fujimoto K. A novel method of direct synthesis of dimethyl carbonate from methanol and carbon dioxide catalyzed by zirconia. Catal Lett, 1999, 58: 225–229

    CAS  Google Scholar 

  23. Tsuda T, Maruta K, Kitaike Y. Nickel(0)-catalyzed alternating copolymerization of carbon dioxide with diynes to poly(2-pyrones). J Am Chem Soc, 1992, 114: 1498–1499

    CAS  Google Scholar 

  24. Behr A, Heite M. Telomerization of carbon dioxide and 1,3-butadiene: Process development in a miniplant. Chem Eng Technol, 2000, 23: 952–955

    CAS  Google Scholar 

  25. Schulz P S, Walter O, Dinjus E. Facile synthesis of a tricyclohexylphosphine-stabilized η3-allyl-carboxylato Ni(II) complex and its relevance in electrochemical butadiene carbon dioxide coupling. Appl Organomet Chem, 2005, 19: 1176–1179

    CAS  Google Scholar 

  26. Takimoto M, Mori M. Novel catalytic CO2 incorporation reaction: Nickel-catalyzed regio- and stereoselective ring-closing carboxylation of bis-1,3-dienes. J Am Chem Soc, 2002, 124: 10008–10009

    CAS  Google Scholar 

  27. McGhee W, Riley D, Christ K, Pan Y, Parnas B. Carbon dioxide as a phosgene replacement: Synthesis and mechanistic studies of urethanes from amines, CO2 and alkyl chlorides. J Org Chem, 1995, 60: 2820–2830

    CAS  Google Scholar 

  28. Ochiai B, Inoue S, Endo T. One-pot non-isocyanate synthesis of polyurethanes from bisepoxide, carbon dioxide, and diamine. J Polym Sci, Part A: Polym Chem, 2005, 43: 6613–6618

    CAS  Google Scholar 

  29. Ushikoshi K, Mori K, Watanabe T, Saito M. A 50 kg/day class test plant for methanol synthesis from CO2 and H2 Study. Surf Sci Catal, 1998, 114: 357–364

    Google Scholar 

  30. Bart J C J, Sneeden J J F. Copper-zinc oxide-alumina methanol catalysts revisited. Catal Today, 1987, 2: 1–124

    CAS  Google Scholar 

  31. Fujita S-I, Usui M, Ito H, Takezawa N, Mechanisms of methanol synthesis from carbon dioxide and from carbon monoxide at atmospheric pressure over Cu/ZnO. J Catal, 1995, 157: 403–413

    CAS  Google Scholar 

  32. Inoue Y, Izumida H, Sasaki Y, Hashimoto H. Catalytic fixation of carbon dioxide to formic acid by transtionn-metal complexes under mild conditions. Chem Lett, 1976, 863–864

  33. Darensbourg D J, Ovalles C, Pala M. Homogeneous catalysts for carbon dioxide/hydrogen activation. Alkyl formate production using anionic ruthenium carbonyl clusters as catalysts J Am Chem Soc, 1983, 105: 5937–5939

    CAS  Google Scholar 

  34. Tsai J-C, Nicholas K M, Rhodium-catalyzed hydrogenation of carbon dioxide to formic acid 1. J Am Chem Soc. 1992, 114: 5117–5124

    CAS  Google Scholar 

  35. Gassner F, Leitner W. Hydrogenation of carbon dioxide to formic acid using water-soluble rhodium catalyststs. J Chem Soc, Chem Commun, 1993, 1465–1467

  36. Jessop P J, Ikariya T, Noyori R. Homogeneous hydrogenation of carbon dioxide. Chem Rev, 1995, 95: 259–272

    CAS  Google Scholar 

  37. Jessop P J, Hisiao Y, Ikariya T, Noyori R. J Am Chem Soc, 1996, 118: 344–355

    CAS  Google Scholar 

  38. Tominaga K, Sasaki Y, Kawai M, Watanabe T, Saito M. Ruthenium complex catalysed hydrogenation of carbon dioxide to carbon monoxide, methanol and methane. J Chem Soc, Chem Commun, 1993, 629–630

  39. Xiaoding X, Moulijin J A. Mitigation of CO2 by chemical conversion: Plausible chemical reactions and promising products. Energy Fuels, 1996, 10: 305–325

    CAS  Google Scholar 

  40. Gibson D H. Carbon dioxide coordination chemistry: Metal complexes and surface-bound species. What relationships? Coord Chem Rev, 1999, 185-186: 335–355

    CAS  Google Scholar 

  41. Arakawa H, Aresta M, Armor J M, Barteau M A, Beckman E J, Bell A T, Bercaw J E, Creutz C, Dinjus E, Dixon D A, Domen K, DuBois D L, Eckert J. Fujita E, Gibson D H, Goddard W A, Goodman D W, Keller J, Kubas J G, Kung H H, Lyons J E, Manzer L E, Marks T J, Morokuma K, Nicholas K M, Perina R, Que L, Rosrup-Nielson J, Sachatler W M H, Scmidt L D, Sen A, Somorjai G A, Stair P C, Stults B R, Tumas W. Catalysis research of relevance to carbon management: Progress, challenges, and opportunities. Chem Rev, 2001, 101: 953–996

    CAS  Google Scholar 

  42. Shi M, Shen Y-M. Recent progresses on the fixation of carbon dioxide. Curr Org Chem, 2003, 7: 737–745

    CAS  Google Scholar 

  43. Clifford A A. in: Kiran E, Levelt Sengers J M H. Eds, Supercritical Fluids - Fundamentals for Application, Kluwer Academic Publishers: Dordrecht 1994, 449–479

    Google Scholar 

  44. Cansell F, Aymonier C, Loppinet-Serani A. Review on materials science and supercritical fluids. Curr Opin, Solid State Mater Sci, 2003, 7: 331–340

    CAS  Google Scholar 

  45. Barnabas I J, Dean J R, Owen S P. Supercritical fluid extraction of analytes from environmental samples - a review. Analyst, 1994, 119: 2381–2394

    CAS  Google Scholar 

  46. Del Valle J M, De La Fuente J C. Supercritical CO2 extraction of oilseeds: Review of kinetic and equilibrium models. Crit Rev Food Sci, Nutr, 2006, 46: 131–160

    Google Scholar 

  47. Palmer M V, Ting S S T. Applications for supercritical fluid technology in food processing Food Chem. 1995, 52: 345–352

    CAS  Google Scholar 

  48. Behr A. Carbon Dioxide as an Alternative C1 Synthetic Unit: Activation by Transition-Metal Complexes. Angew Chem Int Ed Engl, 1988, 27: 661–678

    Google Scholar 

  49. Elvers B, Hawkins S, Schulz G. (Eds.) Ulmann’s Encyclopedia of Industrial Chemistry A, vol. 21, fifth ed, VCH, Weinheim, Germany, 1992, 207

    Google Scholar 

  50. Beckman E J. Making polymers from carbon dioxide. Science, 1999, 283: 946–947

    CAS  Google Scholar 

  51. Kihara N, Hara N, Endo T. Catalytic activity of various salts in the reaction of 2,3- epoxypropyl phenyl ether and carbon dioxide under atmospheric pressure. J Org Chem, 1993, 58: 6198–6202

    CAS  Google Scholar 

  52. Zhu H, Chen L B, Jiang Y-Y. Synthesis of propylene carbonate and some dialkyl carbonates in the presence of bifunctional catalyst compositions. Polym Adv Tech, 1996, 7: 701–703

    CAS  Google Scholar 

  53. Zhao T, Han Y, Sun Y. Cycloaddition between propylene oxide and CO2 over metal oxide supported KI Phys. Chem Chem Phys. 1999, 1: 3047–3051

    CAS  Google Scholar 

  54. Iwasaki T, Kihara N, Endo T. Reaction of various oxiranes and carbon dioxide. Synthesis and aminolysis of five-membered cyclic carbonates. Bull Chem Soc Jpn, 2000, 73: 713–719

    CAS  Google Scholar 

  55. Nishikubo T, Kameyama A, Yamashita J, Tomoi M, Fukuda W. Insoluble polystyrene-bound quaternary onium salt catalysts for the synthesis of cyclic carbonates by the reaction of oxiranes with carbon dioxide. J Polym Sci A: Polym Chem, 1993, 31: 939–947

    CAS  Google Scholar 

  56. Calo W, Nacci A, Monopoli A, Fanizzi A. Cyclic carbonate formation from carbon dioxide and oxiranes in tetrabutylammonium halides as solvents and catalysts. Org Lett, 2002, 4: 2561–2563

    CAS  Google Scholar 

  57. Kossev K, Koseva N, Troev K. Calcium chloride as co-catalyst of onium halides in the cycloaddition of carbon dioxide to oxiranes. J Mol Catal A: Chem, 2003, 194: 29–37

    CAS  Google Scholar 

  58. Kawanami H, Ikushima Y. Chemical fixation of carbon dioxide to styrene carbonate under supercritical conditions with DMF in the absence of any additional catalysts. Chem Commun, 2000, 2089–2090

  59. Barbarini A, Maggi R, Mazzacani A, Mori G, Sartori G, Sartrio R. Cycloaddition of CO2 to epoxides over both homogeneous and silica-supported guanidine catalysts. Tetrahedron Lett, 2003, 44: 2931–2934

    CAS  Google Scholar 

  60. Shen Y M, Duah W L, Shi M. Phenol and organic bases cocatalyzed chemical fixation of carbon dioxide with terminal epoxides to form cyclic carbonates. Adv SynthCatal, 2003, 345: 337–340

    CAS  Google Scholar 

  61. Yano T, Matsui H, Koike T, Ishiguro H, Fujihara H, Yoshihara M, Maeshima T. Magnesium oxide-catalysed reaction of carbon dioxide with an epoxide with retention of stereochemistry. Chem Commun, 1997, 1129–1130

  62. Yamaguchi K. Ebitani K, Yoshida T, Yoshida H, Kaneda K. Mg-Al mixed oxides as highly active acid-base catalysts for cycloaddition of carbon dioxide to epoxides. J Am Chem Soc, 1999, 121, 4526–4527

    CAS  Google Scholar 

  63. Bhanage BM, Fujita S, Ikushima Y, Arai M. Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides, and methanol using heterogeneous basic metal oxide catalysts with high activity and selectivity. Appl Catal A: Gen, 2001, 219: 259–266

    CAS  Google Scholar 

  64. Yasuda H, He L N, Sakakura T. Cyclic carbonate synthesis from supercritical carbon dioxide and epoxide over lanthanide oxychloride. J Catal, 2002, 209: 547–550

    CAS  Google Scholar 

  65. Doskocil E J, Bordawekar S V, Kaye B C, Davis R J. UV-vis spectroscopy of iodine adsorbed on alkali-metal-modified zeolite catalysts for addition of carbon dioxide to ethylene oxide. J Phys Chem B, 1999, 103: 6277–6282

    CAS  Google Scholar 

  66. Tu M, Davis R J. Cycloaddition of CO2 to Epoxides over solid base catalysts. J Catal, 2001, 199: 85–91

    CAS  Google Scholar 

  67. Srivastava R, Srinivas D, Ratnasamy P. Synthesis of polycarbonate precursors over titanosilicate molecular sieves. Catal Lett, 2003, 91: 133–139

    CAS  Google Scholar 

  68. Fujita S, Bhanage B M, Ikushima Y, Arai M. Chemical fixation of carbon dioxide to propylene carbonate using smectite catalysts with high activity and selectivity. Catal Lett, 2002, 79: 95–98

    CAS  Google Scholar 

  69. Bhanage BM, Fujita S, Ikushima Y, Arai M. Synthesis of dimethyl carbonate and glycols from carbon dioxide, epoxides and methanol using heterogeneous Mg containing smectites catalysts: effect of reaction variables on activity and selectivity performance. Green Chem, 2003, 5: 71–75

    CAS  Google Scholar 

  70. Nomura R, Ninagawa A, Matsuda H. Synthesis of cyclic carbonates from carbon dioxide and epoxides in the presence of organoantimony compounds as novel catalysts. J Org Chem, 1980, 45: 3735–3738

    CAS  Google Scholar 

  71. Baba A, Nozaki T, Matsuda H. Carbonate formation from oxiranes and carbon dioxide catalyzed by organotin halide-tetraalkylphosphonium halide complexes. Bull Chem Soc Jpn, 1987, 60: 1552–1554

    CAS  Google Scholar 

  72. Ji D, Lu X, He R. Syntheses of cyclic carbonates from carbon dioxide and epoxides with metal phthalocyanines as catalyst. Appl Catal A: Gen, 2000, 203: 329–333

    CAS  Google Scholar 

  73. Kim H S, Kim J J, Lee B G, Jung O S, Jang H G, Kang S O. Isolation of a pyridinium alkoxy ion bridged dimeric zinc complex for the coupling reactions of CO2 and epoxides. Angew Chem Int Ed Engl, 2000, 39: 4096–4098

    CAS  Google Scholar 

  74. Paddock R L, Nguyen S T. Chemical CO2 fixation: CR(III) salen complexes as highly efficient catalysts for the coupling of CO2 and epoxides. J Am Chem Soc, 2001, 123: 11498–11499

    CAS  Google Scholar 

  75. Lu X-B, He R, Bai C-X. Synthesis of ethylene carbonate from supercritical carbon dioxide/ethylene oxide mixture in the presence of bifunctional catalyst. J Mol Catal A, Chem, 2002, 186: 1–11

    CAS  Google Scholar 

  76. Kim H S, Kim J J, Kwon H N, Chung M J, Lee B G, Jang H G. Well-defined highly active heterogeneous catalyst system for the coupling reactions of carbon dioxide and epoxides. J Catal, 2002, 205: 226–229

    CAS  Google Scholar 

  77. Shen Y-M, Duan W-L, Shi M. Chemical fixation of carbon dioxide catalyzed by binaphthyldiamino Zn, Cu, and Co salen-type complexes. J Org Chem, 2003, 68: 1559–1562

    CAS  Google Scholar 

  78. Li FW, Xia C G, Xu LW, Sun W, Chen G X. A novel and effective Ni complex catalyst system for the coupling reactions of carbon dioxide and epoxides. Chem Commun, 2003, 2042–2043

  79. Srivastava R, Srinivas D, Ratnasamy R. Synthesis of cyclic carbonates from olefins and CO2 over zeolite-based catalysts. Catal Lett, 2003, 89, 81–85

    CAS  Google Scholar 

  80. Paddock R L, Hiyama Y, McKay J M, Nguyen S T. Co(III) porphyrin/DMAP: An efficient catalyst system for the synthesis of cyclic carbonates from CO2 and epoxides. Tetrahedron Lett, 2004, 45: 2023–2026

    CAS  Google Scholar 

  81. Peng J J, Deng Y Q. Cycloaddition of carbon dioxide to propylene oxide catalyzed by ionic liquids. New J Chem, 2001, 25: 639–641

    CAS  Google Scholar 

  82. Yang H, Deng Y, Shi F. Electrochemical activation of carbon dioxide in ionic liquid: synthesis of cyclic carbonates at mild reaction conditions. Chem Commun, 2002, 274–275

  83. Kawanami H, Sakaki A, Matsui K, Ikushima Y. A rapid and effective synthesis of propylene carbonate using a supercritical CO2-ionic liquid system. Chem Commun, 2003, 896–897

  84. Kim H S, Kim J J, Kim H, Jang H G. Imidazolium zinc tetrahalide-catalyzed coupling reaction of CO2 and ethylene oxide or propylene oxide. J Catal, 2003, 220: 44–46

    CAS  Google Scholar 

  85. Darensbourg D J, Holtcamp M W. Catalysts for the reactions of epoxides and carbon Dioxide. Coord. Chem Rev, 1996, 153: 155–174

    CAS  Google Scholar 

  86. BASF starts alkylene carbonate plant, Filtration Industry Analyst, 1999, 27: 2

    Google Scholar 

  87. Fukuoka S, Kawamura M, Komiya K, Tojo M, Hachiya H, Hasegawa K, Aminaka M, Okamoto H, Fukawa I, Konno S. A novel non-phosgene polycarbonate production process using byproduct CO2 as starting material Green Chem, 2003, 5: 497–507

    CAS  Google Scholar 

  88. Jagtap S R, Bhanushali M J, Panda A G, Bhanage B M. Synthesis of cyclic carbonates from carbon dioxide and epoxides using alkali metal halide supported liquid phase catalyst. Cat Lett, 2006, 112: 51–55

    CAS  Google Scholar 

  89. Kihara N, Hara N, Endo T. Catalytic activity of various salts in the reaction of 2,3- epoxypropyl phenyl ether and carbon dioxide under atmospheric pressure. J Org Chem, 1993, 58: 6198–6202

    CAS  Google Scholar 

  90. Du Y, Wang J Q, Chen J Y, Cai F, Tian J S, Kong D L, He L N. A poly(ethylene glycol)-supported quaternary ammonium salt for highly efficient and environmentally friendly chemical fixation of CO2 with epoxides under supercritical conditions. Tetrahedron Lett, 2006, 47: 1271–1275

    CAS  Google Scholar 

  91. Xiao L F, Li F W, Xia C G. An easily recoverable and efficient natural biopolymer-supported zinc chloride catalyst system for the chemical fixation of carbon dioxide to cyclic carbonate. Appl Catal, A, 2005, 279: 125–129

    CAS  Google Scholar 

  92. Du Y, Cai F, Kong D L, He L N. Organic solvent-free process for the synthesis of propylene carbonate from supercritical carbon dioxide and propylene oxide catalyzed by insoluble ion exchange resins. Green Chem, 2005, 7: 518–523

    CAS  Google Scholar 

  93. Shi F, Zhang Q H, Ma Y B, He Y D, Deng Y Q. From CO oxidation to CO2 activation: An unexpected catalytic activity of polymer-supported nanogold. J Am Chem Soc, 2005, 127: 4182–4183

    CAS  Google Scholar 

  94. Alvaro M, Baleizao C, Carbonell E, El Ghoul M, Garcia H, Gigante B. Polymer-bound aluminium salen complex as reusable catalysts for CO2 insertion into epoxides. Tetrahedron, 2005, 61: 12131–12139

    CAS  Google Scholar 

  95. Park D W, Yu B S, Jeong E S, Kim I, Kim M I, Oh K J, Park S W. Comparative studies on the performance of immobilized quaternary ammonium salt catalysts for the addition of carbon dioxide to glycidyl methacrylate. Catal Today, 2004, 98: 499–504

    CAS  Google Scholar 

  96. Nishikubo T, Kameyama A, Yamashita J, Fukumitsu T, Maejima C, Tomoi M J. Polym Sci Part A: Polym Chem, 1995, 33: 1011

    CAS  Google Scholar 

  97. Yamashita J, Kameyama A, Nishikubo T, Fukuda W, Tomoi M. Addition réaction of epoxy compounds with carbon dioxide using insoluble polymer supported crown ether as complexes as catalyst. Kobunshi Ronbunshu, 1993, 50: 577

    CAS  Google Scholar 

  98. Ramin M, Grunwaldt J D, Baiker A. Behavior of homogeneous and immobilized zinc-based catalysts in cycloaddition of CO2 to propylene oxide. J Catal, 2005, 234: 256–267

    CAS  Google Scholar 

  99. Alvaro M, Baleizao C, Das D, Carbonell E, Garcia H. CO2 fixation using recoverable chromium salen catalysts: Use of ionic liquids as cosolvent or high-surface-area silicates as supports. J Catal, 2004, 228: 254–258

    CAS  Google Scholar 

  100. Takahashi T, Watahiki T, Kitazume S, Yasuda H, Sakakura T. Chem. Commun, 2006, 1664

  101. Jagtap S R, Raje V P, Samant S D, Bhanage B M. Synthesis of cyclic carbonates from carbon dioxide and epoxides using alkali metal halide supported liquid phase catalyst. J Mol Catal A: Chem, 2006, 266: 69–74

    Google Scholar 

  102. Boivin S, Chettouf A, Hemery P, Boileau S. Chemical modification of poly(vinyl chloroformate) and of its copolymers using phase transfer catalysis. Polym Bull, 1983, 9: 114–120

    CAS  Google Scholar 

  103. Khur R J, Dorough H W. Carbamate Insectiside Chemistry, Biochemistry and Toxicology, CRS Press, Cleveland, OH, 1976

    Google Scholar 

  104. Murahashi S I, Mitsue Y, Ike K. Palladium-catalysed cross double carbonylation of amines and alcohols: Synthesis of oxamates. J Chem Soc, Chem Commun, 1987, 125–127

  105. Cenini S, Pizzotti M, Crotti C, Porta F, La Monica G. Selective ruthenium carbonyl catalysed reductive carbonylation of aromatic nitro compounds to arbamates. J Chem Soc, Chem Commun, 1984, 1286–1287

  106. Olofson R A, Wooden G P, Marks J T. Eur Patent 104984, Chem Abstr, 1984, 101: 190657u 104

    Google Scholar 

  107. Overberger C G, Ringsdorf H, Weinshenker N. Preparation and polymerization of S-, O-, and N-vinyl derivatives of carbonic acid. Unsaturated carbonic acid derivatives. II. J Org Chem, 1962, 27: 4331–4337

    CAS  Google Scholar 

  108. Olofson R A, Bauman B A, Vancowicz D J. Synthesis of enol chloroformates. J Org Chem, 1978, 43: 752–754

    CAS  Google Scholar 

  109. Olofson R A, Schnur R C, Bunes L, Pepe J P. Selective N dealkylation of tertiary amines with vinyl chloroformate: An improved synthesis of naloxone Tetrahedron Lett, 1977, 1567–1570

  110. Sasaki Y, Dixneuf P H. A novel catalytic synthesis of vinyl carbamates from carbon dioxide, diethylamine, and alkynes in the presence of Ru3(CO)12. J Chem Soc, Chem Commun, 1986, 790–791

  111. Mahe R, Sasaki Y, Bruneau C, Dixneuf P H. Catalytic synthesis of vinyl carbamates from carbon dioxide and alkynes with ruthenium complexes. J Org Chem, 1989, 54: 1518–1523

    CAS  Google Scholar 

  112. Sasaki Y, Dixneuf P H. Ruthenium-catalyzed synthesis of vinyl carbamates from carbon dioxide, acetylene, and secondary amines. J Org Chem, 1987, 52: 314–315

    CAS  Google Scholar 

  113. Bruneau C, Dixneuf P H, Lecolier S. Acetylene in catalysis: a onestep synthesis of vinylcarbamates with [RuCl2(norbornadiene)]n. J Mol Catal, 1988, 441: 75–178

    Google Scholar 

  114. Mitsudo T-A, Hori Y, Yamakawa Y, Watanabe Y. Ruthenium catalyzed selective synthesis of enol carbamates by fixation of carbon dioxide. Tetrahedron Lett, 1987, 28: 4417–4418

    CAS  Google Scholar 

  115. Nandurkar N S, Bhanushali M J, Bhor M D, Bhanage B M. N-Arylation of aliphatic, aromatic and heteroaromatic amines catalyzed by copper bis(2,2,6,6-tetramethyl-3,5-heptanedionate) Tetrahedron Lett, 2007, 48: 6573–6576

    CAS  Google Scholar 

  116. Tambade P J, Patil Y P, Nandurkar N S, Bhanage B M. Copper-catalyzed, palladium free carbonaylative sonogashira coupling raction of aliphatic and aromatic alkynes with iodoaryls. Synlettt, 2008, 6: 886–888

    Google Scholar 

  117. Tambade Pawan J, Patil Yogesh P, Bhanage Bhalchandra M. Palladium bis(2,2,6,6-tetramethyl-3,5-heptanedionate) catalyzed alkoxycarbonylation and aminocarbonylation reactions. App Organo Chem, 23(6): 235–240

  118. Tambade Pawan J, Patil Yogesh P, Panda A G, Bhanage B M. Phosphane-free palladium-catalyzed carbonylative suzuki coupling reaction of aryl and heteroaryl iodides. Eur J Org Chem, 2009, 18: 3022–3025

    Google Scholar 

  119. Patil Y P, Tambade P J, Nandurkar N S, Bhanage B. M. Ruthenium tris(2,2,6,6 tetramethyl-3,5-heptanedionate) catalyzed synthesis of vinyl carbamates using carbon dioxide, amines and alkynes. Cat Com, 2008, 9: 2068–2072

    CAS  Google Scholar 

  120. Bruce M I, Swincer A G. Vinylidene and propadienylidene (allenylidene) metal complexes. Adv Organomet Chem, 1983, 22: 59–128

    CAS  Google Scholar 

  121. Brookhart M S, Tucker J R, Husk G R. Transfer reactions of electrophilic iron carbene complexes Cp(CO)(L)Fe = CHR+, L=CO, P(C6H5)3; R= CH3, CH2CH3, CH(CH3)2. J Am Chem Soc, 1983, 105: 258–264

    CAS  Google Scholar 

  122. Kagara K, Goto S, Tsuboi H. JP, 1989, 1025767. Chem Abstr, 1989, 111: 97274

    Google Scholar 

  123. Mohri S. Research and development of synthetic processes for pharmaceuticals: Pursuit of rapid, inexpensive, and good processes. J Synth Org. Chem. Jpn, 2001, 59(5): 514–515

    Google Scholar 

  124. Merck Index, 12th ed. Merck & Co. Inc. Whitehouse Station NJ, 1996, 7897

  125. Merck Index, 12th ed. Merck & Co. Inc. Whitehouse Station NJ, 1996, 1512

  126. Merck Index, 12th ed. Merck & Co. Inc. Whitehouse Station NJ, 1996, 3489

  127. Pastor G, Blanchard C, Montginoul C, Torreilles E, Giral L, Texier A. Bull Soc Chim Fr, 1975, 1331–1338

  128. Khalifa M, Osman A N, Ibrahim M G, Ossaman A R E, Ismail M A. Synthesis and biological activity of certain derivatives of 2,4-dioxo-1,2,3,4-tetrahydroquinazoline. Part 2 Pharmazie, 1982, 37: 115–117

    CAS  Google Scholar 

  129. Michman M, Patai S, Wiesel Y. Org Prep Proced Int, 1978, 10: 13

    CAS  Google Scholar 

  130. Lange N A, Sheibley F E. Org Synth Coll, Vol II, John Wiley & Sons: London, 943, 79

  131. Vorbrueggen H, Krolikiewicz K. The introduction of nitrile-groups into heterocycles and conversion of carboxylic groups into their corresponding nitriles with chlorosulfonylisocyanate and triethylamine. Tetrahedron, 1994, 50: 6549–6558

    Google Scholar 

  132. Mizuno T, Okamoto N, Ito T, Miyata T. Synthesis of 2,4-dihydroxyquinazolines using carbon dioxide in the presence of DBU under mild conditions. Tetrahedron Lett, 2000, 41: 1051–1053

    CAS  Google Scholar 

  133. Mizuno T, Okamoto N, Ito T, Miyata T. Synthesis of quinazolines using carbon dioxide (or carbon monoxide with sulfur) under mild conditions. Heteroat Chem, 2000, 11: 428–433

    CAS  Google Scholar 

  134. Mizuno T, Ishino Y. Highly efficient synthesis of 1H-quinazoline-2,4-diones using carbon dioxide in the presence of catalytic amount of DBU. Tetrahedron, 2002, 58: 3155–3158

    CAS  Google Scholar 

  135. Mizuno T, Iwai T, Ishino Y. The simple solvent-free synthesis of 1H-quinazoline-2,4-diones using supercritical carbon dioxide and catalytic amount of base. Tetrahedron Lett, 2004, 45: 7073–7075

    CAS  Google Scholar 

  136. Mizuno T, Mihara M, Nakai T, Iwai T, Ito T. Solvent-free synthesis of urea derivatives from primary amines and sulfur under carbon monoxide and oxygen at atmospheric pressure. Synthesis, 2007, 16: 2524–2528

    Google Scholar 

  137. Patil Y P, Tambade P J, Jagtap S R, Bhanage B M. Cesium carbonate catalyzed efficient synthesis of quinazoline-2,4(1H,3H)-diones using carbon dioxide and 2-aminobenzonitriles. Green Chem Lett Rev. 2008, 1 (2): 127–132

    CAS  Google Scholar 

  138. Lehmann F. Spotlight, Cesium carbonate (Cs2CO3). Synlett, 2004, 13: 2474

    Google Scholar 

  139. Jung K W. US Patent, 2002, 6399808

  140. Li P, Xu J C. Highly efficient synthesis of sterically hindered peptides containing N-methylated amino acid residues using a novel 1H-benzimidazolium salt. Tetrahedron, 2000, 56: 9949–9955

    CAS  Google Scholar 

  141. Sato Y, Yamamoto T, Souma Y. Poly(pyridine-2,5-diyl)-CuCl2 catalyst for synthesis of dimethyl carbonate by oxidative carbonylation of methanol: catalytic activity and corrosion influence. Catal Lett, 2000, 65: 123–126

    CAS  Google Scholar 

  142. Pacheco M A, Marshall C L. Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive. Energy Fuels, 1997, 11: 2–29

    CAS  Google Scholar 

  143. Jessop P J, Brass S G, Croudace M C. Gasoline composition containing carbonates. US Patent, 1986, 4600408

  144. Tundo P. New developments in dimethyl carbonate chemistry. Pure Appl Chem, 2001, 73: 1117–1124

    CAS  Google Scholar 

  145. Rivetti F, Romano U, Delledonne D, Anastas P T, Williamson T C. (Eds.), Green Chemistry. Designing chemistry for the environment, ACS Symposium Series No. 626, American Chemical Society, Washington, DC, 1996, 70

  146. Rivetti F, in: Anastas P T, Tundo (Eds.) P, Green Chemistry: Challenging Pespectives, Oxford University Press, Oxford, 2001, 201

    Google Scholar 

  147. Kizlink J, Pastucha I. Correct Czech Chem Commun, 1993, 58: 1399–1402

    CAS  Google Scholar 

  148. Kizlink J, Pastucha I. Correct Czech Chem Commun, 1994, 59: 2116–2118

    Google Scholar 

  149. Kizlink J, Pastucha I. Correct Czech Chem Commun, 1995, 60: 687–692

    CAS  Google Scholar 

  150. Sakakura T, Saito Y, Okano M, Choi J-C, Sako T. Selective conversion of carbon dioxide to dimethyl carbonate by molecular catalysis. J Org Chem, 1998, 63: 7095–7096

    CAS  Google Scholar 

  151. Isaacs N S, O’sullivan B, Verhaelen C. High pressure routes to dimethyl carbonate from supercritical carbon dioxide. Tetrahedron, 1999, 55: 11949–11956

    CAS  Google Scholar 

  152. Fang S, Fujimoto K. Direct synthesis of dimethyl carbonate from carbon dioxide and methanol catalyzed by base. Appl Catal A: Gen, 1996, 142: L1–L3

    CAS  Google Scholar 

  153. Fujita S, Bhanage BM, Ikushima Y, Arai M. Synthesis of dimethyl carbonate from carbon dioxide and methanol in the presence of methyl iodide and base catalysts under mild conditions: effect of reaction conditions and reaction mechanism, Green Chem, 2001, 3: 87–91

    CAS  Google Scholar 

  154. Tomishige K, Sakaihori T, Ikeda Y, Fijimoto K. A novel method of direct synthesis of dimethyl carbonate from methanol and carbon dioxide catalyzed by zirconia. Catal Lett, 2000, 58: 225–229

    Google Scholar 

  155. Ikeda Y, Sakaihori T, Tomishige K, Fijimoto K. Promoting effect of phosphoric acid on zirconia catalysts in selective synthesis of dimethyl carbonate from methanol and carbon dioxide. Catal Lett, 2000, 66: 59–62

    CAS  Google Scholar 

  156. Tomishige K, Sakaihori T, Ikeda Y, Fijimoto K. Catalytic properties and structure of zirconia catalysts for direct synthesis of dimethyl carbonate from methanol and carbon dioxide. J Catal, 2000, 192: 355–362

    CAS  Google Scholar 

  157. Tomishige K, Kanamori K. Catalytic and direct synthesis of dimethyl carbonate starting from carbon dioxide using CeO2-ZrO2 solid solution heterogeneous catalyst: Effect of H2O removal from the reaction system. Appl Catal. A: Gen, 2002, 237: 103–109

    CAS  Google Scholar 

  158. Jung K T, Bell A T. An in Situ infrared study of dimethyl carbonate synthesis from carbon dioxide and methanol over zirconia, J Catal, 2001, 204: 339–347

    CAS  Google Scholar 

  159. Jung K T, Bell A T. Effects of catalyst phase structure on the elementary processes involved in the synthesis of dimethyl carbonate from methanol and carbon dioxide over zirconia. Topics Catal, 2002, 20: 97–105

    CAS  Google Scholar 

  160. Jiang C, Guo Y, Wang C, Hu C, Wu Y, Wang E. Synthesis of dimethyl carbonate from methanol and carbon dioxide in the presence of polyoxometalates under mild conditions. Appl Catal A: Gen, 2003, 256: 203–212

    CAS  Google Scholar 

  161. Chem Eng News, 4 May 1992, 25

  162. Knifton J F. US Patent, 1987, 4661609

  163. Duranleau R G, Nieh E C Y, Knifton J F. US Patent, 1987, 4691041

  164. Knifton J F. Duranleau R G. Ethylene glycol-dimethyl carbonate cogeneration. J Mol Catal, 1991, 67: 389–399

    CAS  Google Scholar 

  165. Watanabe Y, Tatsumi T. Hydrotalcite-type materials as catalysts for the synthesis of dimethyl carbonate from ethylene carbonate and methanol, Micropor. Mesopouro. Matter, 1998, 22: 399

    CAS  Google Scholar 

  166. Tatsumi T, Watanabe Y, Koyano K A. Synthesis of dimethyl carbonate from ethylene carbonate and methanol using TS-1 as solid base catalyst. Chem. Commun, 1996, 2281–2283

  167. Knifton J F, US Patent, 1993, 5214182

  168. Bhanage B M, Fujita S, He Y, Ikushima Y, Shirai M, Torri K, Arai M. Concurrent synthesis of dimethyl carbonate and ethylene glycol via transesterification of ethylene carbonate and methanol using smectite catalysts containing Mg and/or Ni. Catal Lett, 2002, 83: 137–141

    CAS  Google Scholar 

  169. Sriniwas D, Srivasatava R, Ratnasamy P. Transesterifications over titanosilicate molecular sieves. Catal Today, 2004, 96: 127–133

    Google Scholar 

  170. Fujita S, Arai M. Chemical fixation of carbon dioxide: Synthesis of cyclic carbonate, dimethyl carbonate, cyclic urea and cyclic urethane. J Jap Pet Inst, 2005, 48: 67–75

    CAS  Google Scholar 

  171. Li Y, Zhao X Q, Wang Y J. Synthesis of dimethyl carbonate from propylene oxide, carbon dioxide and methanol on KOH/4A molecular sieve catalyst. Chin J Cat, 2004, 25: 633

    Google Scholar 

  172. Feng S J, Lu Z B, He R. Tertiary amino group covalently bonded to MCM-41 silica as heterogeneous catalyst for the continuous synthesis of dimethyl carbonate from methanol and ethylene carbonate. Appl Catal A, Gen, 2004, 272: 347–352

    CAS  Google Scholar 

  173. Buysch H J, Klausener A, Langer R F, Mais J. Ger Offen DE, 1991, 4129316

  174. Frevel L K, Gilpin J A. US Patent, 1972, 3642858

  175. Jagtap S R, Bhanushali M J, Panda A G, Bhanage B M. Synthesis of dimethyl carbonate via transesterification of ethylene carbonate with methanol using poly-4-vinyl pyridine as a novel base catalyst. Cat Comm, 2008, 122: 1928–1931

    Google Scholar 

  176. Dyen M E, Swern D. 2-Oxazolidones, Chem Rev, 1967, 67: 197–246

    CAS  Google Scholar 

  177. Pancartov V A, Frenkel T M, Fainleib A M. 2-Oxazolidinones. Russ Chem Rev, 1983, 52: 576–593

    Google Scholar 

  178. Kudo N, Taniguchi M, Furuta S, Endo T, Honma T. Synthesis and herbicidal activities of 4-Substituted 3-aryl-5-tert-butyl-4-oxazolin-2-ones. Agric Food Chem, 1998, 46: 5305–5312

    CAS  Google Scholar 

  179. Ednie L M, Jacobe M R, Appelbaum P C, Anti-anaerobic activity of AZD2563, a new oxazolidinone, compared with eight other agents. Antimicrob J Chemother, 2002, 50: 101–105

    CAS  Google Scholar 

  180. Gravestock M B, Acton D G, Betts M J, Dannis M, Hatter G, McGregor A, Swain M L, Wilson R G, Woods L, Wookey A. New classes of antibacterial oxazolidinones with C-5, methylene O-linked heterocyclic side chains. Bioorg. Med Chem Lett, 2003, 13: 4179–4186

    CAS  Google Scholar 

  181. Gregory WA, Brittelli D R, C Wang L-J, Wuonola M A, McRipey R J, Eustice D C, Everly V S, Bartholomew P T, Slee A M, Forbes M. Antibacterials. Synthesis and structure-activity studies of 3-aryl-2-oxooxazolidines. 1. The “B” group. J Med Chem, 1989, 32: 1673–1681

    CAS  Google Scholar 

  182. Seneci P, Caspani M, Ripamonti F, Ciabatti R. Synthesis and antimicrobial activity of oxazolidin-2-ones and related heterocycles. J Chem Soc, Perkin Trans, 1994, 1: 2345–2351

    Google Scholar 

  183. O’Hagan D, Tavasli M. A short synthesis of (S)-α-(diphenylmethyl)alkyl amines from amino acids. Tetrahedron: Asymmetry, 1999, 10: 1189–1192

    Google Scholar 

  184. Seydenpenne J. Chiral Auxiliaries and Ligands in Asymmetric Synthesis, Wiley, New York, 1995

    Google Scholar 

  185. Ager D J, Prakash I, Schaad D R. 1,2-Amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis Chem Rev, 1996, 96: 835–875

    CAS  Google Scholar 

  186. Hodge C N, Lam P Y S, Eyermann C J, Jadhav P K, Fernandez Ru Y, De Lucca C H, Chang C H, Kaltenbach R J C, Aldrich P E, Calculated and experimental low-energy conformations of cyclic urea HIV protease inhibitors. J Am Chem Soc, 1998, 120: 4570–4581

    CAS  Google Scholar 

  187. Puschin N A, Mitic R V. Justus Liebigs Ann Chem, 1937, 532: 300

    CAS  Google Scholar 

  188. Wilson A L. US Patent, 1950, 2517750

  189. Fu Y, Baba T, Ono Y. Carbonylation of o-phenylenediamine and o-aminophenol with dimethyl carbonate using lead compounds as catalysts. J Catal, 2001, 197: 91–97

    CAS  Google Scholar 

  190. Baba T, Kobayashi A, Yamauchi T, Tanaka H, Aso S. Inomata M, Kawanami Y. Catalytic methoxycarbonylation of aromatic diamines with dimethyl carbonate to their dicarbamates using zinc acetate. Catal Lett, 2002, 82: 193–197

    CAS  Google Scholar 

  191. Gabriele B, Salerno G, Brindisi D, Costa M, Chiusoli G P. Synthesis of 2-oxazolidinones by direct palladium-catalyzed oxidative carbonylation of 2-amino-1-alkanols. Org Lett, 2000, 2: 625–627

    CAS  Google Scholar 

  192. Buckley G D, Ray N H, US Patent, 1951, 2550767

  193. Ono Y. Dimethyl carbonate for environmentally benign reactions. Catal Today, 1997, 35: 15–25

    CAS  Google Scholar 

  194. Pachenco M A, Marshall C L. Review of dimethyl carbonate (DMC) manufacture and its characteristics as a fuel additive. Energy Fuels, 1997, 11: 2–29

    Google Scholar 

  195. Bank M R, Cadgan J I G, Thomas D E. 1,3-Oxazolidin-2-ones from 1H-aziridines by a novel stratagem which mimics the direct insertion of CO2. J Chem Soc, Perkin Trans I, 1991, 961–962

  196. Bhanage B, Fujita S I, Ikushima Y, Arai M. Non-catalytic clean synthesis route using urea to cyclic urea and cyclic urethane compounds. Green Chem, 2004, 6: 78–80

    CAS  Google Scholar 

  197. Bhanage B M, Fujita S I, Ikushima Y, Arai M. Synthesis of cyclic ureas and urethanes from alkylene diamines and amino alcohols with pressurized carbon dioxide in the absence of catalysts. Green Chem, 2003, 5: 340–342

    CAS  Google Scholar 

  198. Xiao L F, Xu L W, Xia C G. A method for the synthesis of 2-oxazolidinones and 2-imidazolidinones from five-membered cyclic carbonates and -aminoalcohols or 1,2-diamines. Green Chem, 2007, 9: 369–372

    CAS  Google Scholar 

  199. Tu M, Davis R J. Cycloaddition of CO2 to epoxides over solid base catalysts. J Catal, 2001, 199: 85–91

    CAS  Google Scholar 

  200. Sun J, Fujita S I, Bhanage B M, Arai M. One-pot synthesis of styrene carbonate from styrene in tetrabutylammonium bromide. Catal Today, 2004, 93-95: 383–388

    CAS  Google Scholar 

  201. Jagtap S R, Patil Y P, Fujita S I, Arai M, Bhanage B M. Heterogeneous base catalyzed synthesis of 2-oxazolidinones/2-imidiazolidinones via transesterification of ethylene carbonate with β-aminoalcohols/1,2-diamines. Appl Catal A: Gen, 2008, 341: 133–138

    CAS  Google Scholar 

  202. Patil Y P, Tambade P J, Jagtap S R, Bhanage B M. Synthesis of 2-oxazolidinones/2-imidazolidinones from CO2, different epoxides and amino alcohols/alkylene diamines using Br Ph +3 P-PEG600− P+Ph3Br as homogenous recyclable catalyst. J Mol Cata A. Chem, 2008, 289: 14–21

    CAS  Google Scholar 

  203. Bigi F, Maggi R, Sartori G. Selected syntheses of ureas through phosgene substitutes. Green Chem, 2000, 2: 140–148

    CAS  Google Scholar 

  204. Getman D P, DeCrescenzo G A, Heintz R M, Reed K L, Talley J J, Bryant M L, Clare M, Houseman K A, Marr J J, Mueller R A, VazquezML H, Shieh S, Stallings WC, Stageman R A. Discovery of a novel class of potent HIV-1 protease inhibitors containing the (R)- (hydroxyethyl)urea isostere. J Med Chem, 1993, 36: 288–291

    CAS  Google Scholar 

  205. Sonoda N, Yasuhara T, Kondo K, Ikeda T, Tsutsumi S. New synthesis of ureas. Reaction of ammonia or aliphatic amines with carbon monoxide in the presence of selenium. J Am Chem Soc, 1971, 93: 6344

    CAS  Google Scholar 

  206. Giannoccaro P. Palladium-catalysed N,N′-disubstituted urea synthesis by oxidative carbonylation of amines under CO and O2 at atmospheric pressure. J Organomet Chem, 1987, 336: 271–278

    CAS  Google Scholar 

  207. Choudary B M, Rao K K A, Pirozhokov S D, Lapidus A L. Conversion of primary amines to N,N′-disubstituted ureas using montmorillonitebipyridinepalladium(II)-acetate and di-tert butyl peroxide. Synth Commun, 1991, 21: 1923–1927

    CAS  Google Scholar 

  208. Kelkar A A, Kolhe D S, Kanagasabapathy S, Chaudhari R V. Ind Eng Chem Res, 1992, 31: 172

    CAS  Google Scholar 

  209. Shi F, Deng Y. First gold(I) complex-catalyzed oxidative carbonylation of amines for the syntheses of carbamates Chem. Commun, 2001, 443–444

  210. Bartolo G, Salerno G, Mancuso R, Costa M. Efficient synthesis of ureas by direct palladium- catalyzed oxidative carbonylation of amines. J Org Chem, 2004, 69: 4741–4750

    Google Scholar 

  211. McCusker J E, Main A D, Johnson K S, Grasso C A, McElwee-White L. W(CO)6-Catalyzed oxidative carbonylation of primary amines to N,N′-disubstituted ureas in single or biphasic solvent systems. optimization and functional group compatibility studies J Org Chem, 2000, 65: 5216–5222

    CAS  Google Scholar 

  212. Shi F, Deng Y Y, Sima T L, Yang H Z. A novel ZrO2 - SO 2−4 supported palladium catalyst for syntheses of disubstituted ureas from amines by oxidative carbonylation. Tetrahedron lett, 2001, 42: 2161–2163

    CAS  Google Scholar 

  213. Enquist Per-Anders P, Nilsson J Edin, Larhed M. Super fast cobalt carbonyl-mediated synthesis of ureas. Tethrahedron lett, 2005, 46: 3335–3339

    Google Scholar 

  214. Gabriele B, Salerno R, Mancuso, Costa M. Efficient synthesis of ureas by direct palladium-catalyzed oxidative carbonylation of amines. J Org Chem, 2004, 69: 4741–4750

    CAS  Google Scholar 

  215. Nagaraju N, Kuriakose G. A new catalyst for the synthesis of N,N-biphenylurea from aniline and dimethyl carbonate Green Chem, 2002, 4: 269–271

    CAS  Google Scholar 

  216. Li Q-F, Wang JW, Dong W S, Kang M Q, Wang X K, Peng Y S. A phosgene-free process for the synthesis of methyl N-phenyl carbamate by the reaction of aniline with methyl carbamate. J Mol Catal. A: Chem, 2004, 212: 99–105

    CAS  Google Scholar 

  217. Ion A, Parvulescu V, Jacobs P, De Vos D. Synthesis of symmetrical or asymmetrical urea compounds from CO2 via base catalysis, Green Chem, 2007, 9: 158–161

    CAS  Google Scholar 

  218. Jiang T, Ma X, Zhou Y, Liang S, Zhang J, Han B. Solvent-free synthesis of substituted ureas from CO2 and amines with a functional ionic liquid as the catalyst. Green Chem, 2008, 10: 465–469

    CAS  Google Scholar 

  219. Ogura H, Tekeda K, Tokue R, Kobayashi T. A convenient direct synthesis of ureas from carbon dioxide and amines. Synthesis, 1978, 394–396

  220. Fournier J, Bruneau C, Dixneuf P H, Lecolier S. Ruthenium-catalyzed synthesis of symmetrical N,N-dialkylureas directly from carbon dioxide and amines. J Org Chem, 1991, 56: 4456–4458

    CAS  Google Scholar 

  221. Cooper C F, Falcone S J. A simple one-pot procedure for preparing symmetrical diaryllureas from carbon dioxide and aromatic amines. Synth Commun, 1995, 25: 2467–2475

    CAS  Google Scholar 

  222. Yamazaki N, Higashi F, Iguchi T. Carbonylation of amines with carbon dioxide under atmospheric conditions. Tetrahedron Lett, 1974, 13: 1191–1194

    Google Scholar 

  223. Nomura R, Hasegawa Y, Ishimoto M, Toyosaki T, Matsuda H. Carbonylation of amines by carbon dioxide in the presence of an organoantimony catalyst. J Org Chem, 1992, 57: 7339–7342

    CAS  Google Scholar 

  224. Fournier J, Bruneau C, Dixneuf P H, Lecolier S. Ruthenium-catalyzed synthesis of symmetrical N,N-dialkylureas directly from carbon dioxide and amines. J Org Chem, 1991, 56: 4456–4458

    CAS  Google Scholar 

  225. Yamazaki N, Higashi F, Iguchi T. Carbonylation of amines with carbon dioxide under atmospheric conditions. Tetrahedron Lett, 1974, 13: 1191–1194

    Google Scholar 

  226. Aresta M, Quaranta E, Tommasi I, Giannocarro P, Ciccarese A. Gazz Chim Ital, 1995, 125: 509

    CAS  Google Scholar 

  227. Hayashi T, Yasuoka J. EP, 1998, 846679 (to Sumika Fine Chemicals Co.)

  228. Fujita S, Bhanage B. M, Arai M. Synthesis of N,N-disubstituted urea from ethylene carbonate and amine using CaO. Chem Lett, 2004, 33: 742–743

    Google Scholar 

  229. Fujita S, Bhanage B M, Kanamura H, Arai M, Synthesis of 1,3-dialkylurea from ethylene carbonate and amine using calcium oxide. J Mol Catal A: Chem, 2005, 230: 43–48

    CAS  Google Scholar 

  230. Jagtap S R, Patil Y P, Fujita S I, Arai M, Bhanage B M. Synthesis of 1,3-disubstituted symmetrical/unsymmetrical ureas via Cs2CO3-catalyzed transamination of ethylene carbonate and primary amines. Syn Comm, 2009, 39: 2093–2100

    CAS  Google Scholar 

  231. Ostrowicki A, Vogtle F. In Topics In Current Chemistry; Weber E, Vogtle F, Eds. Springer-Verlag: Heidelberg, 1992, 161: 37

    Google Scholar 

  232. Galli C. “Cesium ion effect” and macrocyclization. a critical review. Org Prep Proced Int, 1992, 24: 287–307

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhalchandra M. Bhanage.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patil, Y.P., Tambade, P.J., Jagtap, S.R. et al. Carbon dioxide: a renewable feedstock for the synthesis of fine and bulk chemicals. Front. Chem. Eng. China 4, 213–235 (2010). https://doi.org/10.1007/s11705-009-0227-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-009-0227-0

Keywords

Navigation