Skip to main content
Log in

Phenolic rigid organic filler/isotactic polypropylene composites. III. Impact resistance property

  • Research Article
  • Published:
Frontiers of Chemical Engineering in China Aims and scope Submit manuscript

Abstract

A novel phenolic rigid organic filler (KT) was used to modify isotactic polypropylene (iPP). The influence of KT particles on the impact resistance property of PP/KT specimens (with similar interparticles distance, 1.8 μm) was studied by notched izod impact tests. It was found that the brittle-ductile transition (BDT) of the PP/KT microcomposites took place at the filler content of about 4%, and the impact strength attains the maximum at 5% (with filler particles size of 1.5 μm), which is about 2.5 times that of unfilled iPP specimens. The impact fracture morphology was investigated by scanning electron microscopy (SEM). For the PP/KT specimens and the highdensity polyethylene/KT (HDPE/KT) specimens in ductile fracture mode, many microfibers could be found on the whole impact fracture surface. It was the filler particles that induced the plastic deformation of interparticles ligament and hence improved the capability of iPP matrix on absorbing impact energy dramatically. The determinants on the BDT were further discussed on the basis of stress concentration and debonding resistance. It can be concluded that aside from the interparticle distance, the filler particles size also plays an important role in semicrystalline polymer toughening. Keywords rigid organic filler, polypropylene, impact

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Karger-Kocsis J, ed. Polypropylene: composites, London: Chapman & Hall, 1995. Chapter 1

    Google Scholar 

  2. Baker R A, Koller L L, Kummer P E. Handbook of fillers for plastics, 2nd ed. New York: Van Nostrand Reinhold, 1987

    Google Scholar 

  3. Thio Y S, Argon A S, Cohen R E, Weinberg M. Toughening of isotactic polypropylene with CaCO3 particles. Polymer, 2002, 43 (13): 3661–3674

    Article  CAS  Google Scholar 

  4. Zuiderduin W C J, Westzaan C, Huétink J, Gaymans R J. Toughening of polypropylene with calcium carbonate particles. Polymer, 2003, 44(1): 261–275

    Article  CAS  Google Scholar 

  5. Zhang Q X, Yu Z Z, Xie X L, Mai Y W. Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with nonionic modifier. Polymer, 2004, 45(17): 5985–5994

    Article  CAS  Google Scholar 

  6. Liang J Z, Li R K Y. Brittle-ductile transition in polypropylene filled with glass beads. Polymer, 1999, 40(11): 3191–3195

    Article  CAS  Google Scholar 

  7. Wu X, Zhu X, Qi Z. The 8th International conference on deformation, yield and fracture of polymers. London: The Plastics and Rubber Institute, 1991:78/1

    Google Scholar 

  8. Muratoglu O K, Argon A S, Cohen R E, Weinberg M. Crystalline morphology of polyamide-6 near planar surfaces. Polymer, 1995, 36 (11): 2143–2152

    Article  CAS  Google Scholar 

  9. Bartczak Z, Argon A S, Cohen R E, Kowalewski T. The morphology and orientation of polyethylene in films of sub-micron thickness crystallized in contact with calcite and rubber substrates. Polymer, 1999, 40(9): 2367–2380

    Article  CAS  Google Scholar 

  10. Muratoglu O K, Argon A S, Cohen R E, Weinberg M. Toughening mechanism of rubber-modified polyamides. Polymer, 1995, 36(5): 921–930

    Article  CAS  Google Scholar 

  11. Muratoglu O K, Argon A S, Cohen R E, Weinberg M. Microstructural processes of fracture of rubber-modified polyamides. Polymer, 1995, 36(25): 4771–4786

    Article  CAS  Google Scholar 

  12. Wang Y, Fu Q, Li Q, Zhang G, Shen K, Wang Y Z. Ductile-brittletransition phenomenon in polypropylene/ethylene-propylene-diene rubber blends obtained by dynamic packing injection molding: A new understanding of the rubber-toughening mechanism. J Polym Sci: Polym Phys, 2002, 40(18): 2086–2097

    Article  CAS  Google Scholar 

  13. Qi D M, Yang L, Wu M H, Lin H M, Nitta K H. Phenolic rigid organic filler/isotactic polypropylene composites. I. preparation. Frontiers of Chemical Engineering in China, 2008, 2(3): 236–241

    Article  CAS  Google Scholar 

  14. Rong M Z, Zhang M Q, Zheng Y X, Zeng H M, Friedrich K. Improvement of tensile properties of nano-SiO2/PP composites in relation to percolation mechanism. Polymer, 2001, 42(7): 3301–3304

    Article  CAS  Google Scholar 

  15. Jancar J, Dianselmo A. The yield strength of particulate reinforced thermoplastic composites. Polym Eng Sci, 1992, 32(18): 1394–1399

    Article  CAS  Google Scholar 

  16. Fu Q, Wanh G, Shen J. Polyethylene toughened by CaCO3 particle: Brittle-ductile transition of CaCO3-toughened HDPE. J Appl Polym Sci, 1993, 49(4): 673–677

    Article  CAS  Google Scholar 

  17. Chen S G, Hu J W, Zhang M Q, Rong M Z, Zheng Q. Time dependent percolation of carbon black filled polymer composites in response to solvent vapor. J Mater Sci, 2005, 40(8): 2065–2068

    Article  CAS  Google Scholar 

  18. Wang K, Wu J S, Zeng H M. Microstructure and fracture behavior of polypropylene/barium sulfate composites. J Appl Polym Sci, 2006, 99(3): 1207–1213

    Article  CAS  Google Scholar 

  19. Bikiaris D N, Papageorgiou G Z, Pavlidou E, Vouroutzis N, Palatzoglou P, Karayannidis G P. Preparation by melt mixing and characterization of isotactic polypropylene/SiO2 nanocomposites containing untreated and surface-treated nanoparticles. J Appl Polym Sci, 2006, 100(4): 2684–2696

    Article  CAS  Google Scholar 

  20. Dubnikova I L, Berezina S M, Antonov AV. Effect of rigid particle size on the toughness of filled polypropylene. J Appl Polym Sci, 2004, 94(5): 1917–1926

    Article  CAS  Google Scholar 

  21. Hutchinson J W. Crack tip shielding by micro-cracking in brittle solids. Acta metallurgica, 1987, 35(7):1605–1619

    Article  CAS  Google Scholar 

  22. Bartczak Z, Argon A S, Cohen R E, Weinberg M. Toughness mechanism in semi-crystalline polymer blends: I. High-density polyethylene toughened with rubbers Polymer, 1999, 40 (9): 2331–2346; II. High-density polyethylene toughened with calcium carbonate filler particles. Polymer, 1999, 40(9): 2347–2365

    CAS  Google Scholar 

  23. Qi D M, Shao J Z, Wu M H, Nitta K H. Phenolic rigid organic filler/isotactic polypropylene composites. II. tensile properites. Frontiers of Chemical Engineering in China, 2008, 2(4): 396–401

    Article  CAS  Google Scholar 

  24. Mccrum N G, Buckley C B, Bucknall C B. Principles of Polymer Engineering. New York: Oxford University Press, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dongming Qi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, H., Qi, D., Han, J. et al. Phenolic rigid organic filler/isotactic polypropylene composites. III. Impact resistance property. Front. Chem. Eng. China 3, 176–181 (2009). https://doi.org/10.1007/s11705-009-0203-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-009-0203-8

Keywords

Navigation