Skip to main content
Log in

Controlled synthesis of uniform silver nanowires with high aspect ratios in aqueous solutions of gemini surfactant

  • Research Article
  • Published:
Frontiers of Chemical Engineering in China Aims and scope Submit manuscript

Abstract

A simple solution-phase approach has been demonstrated for the large-scale synthesis of silver nanowires with diameters in the range of 15–25 nm, and lengths usually in the range of tens of micrometers. In the presence of gemini surfactant 1,3-bis(cetyldimethylammonium) propane dibromide (16-3-16), the growth of silver could be directed into a highly anisotropic mode to form uniform nanowires with aspect ratios up to about 2,000. X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), X-ray powder diffraction (XRD), electron diffraction (ED), and UV-vis absorption spectroscopy, were used to characterize the as-prepared silver nanowires, indicating the formation of a highly pure phase, good crystallinity, as well as a uniform diameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. El-Sayed M A. Some interesting properties of metals confined in time and nanometer space of different shapes. Accounts Chem Res, 2001, 34: 257–264

    Article  CAS  Google Scholar 

  2. Peng X G, Manna L, Yang W D, Wickham J, Scher E, Kadavanich A, Alivisatos A P. Shape control of CdSe nanocrystals. Nature, 2000, 404: 59–61

    Article  CAS  Google Scholar 

  3. Lieber C M. One-dimensional nanostructures: Chemistry, physics and applications. Solid State Commun, 1998, 107: 607–616

    Article  CAS  Google Scholar 

  4. Templeton A C, Wuelfing W P, Murray R W. Monolayer-protected cluster molecules. Accounts Chem Res, 2000, 33: 27–36

    Article  CAS  Google Scholar 

  5. Zhou K B, Wang X, Sun X M, Peng Q, Li Y D. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes. J Catal, 2005, 229: 206–212

    Article  CAS  Google Scholar 

  6. Xu J, Han X, Liu H, Hu Y. Synthesis and optical properties of silver nanoparticles stabilized by gemini surfactant. Colloid Surface A, 2006, 273: 179–183

    Article  CAS  Google Scholar 

  7. Jin R C, Cao Y W, Mirkin C A, Kelly K L, Schatz G C, Zheng J G. Photoinduced conversion of silver nanospheres to nanoprisms. Science, 2001, 294: 1,901–1,903

    CAS  Google Scholar 

  8. Jiang P, Li S Y, Xie S S, Gao Y, Song L. Machinable long PVP-stabilized silver nanowires. Chem-Eur J, 2004, 10: 4,817–4,821

    Article  CAS  Google Scholar 

  9. Wang Z H, Liu J W, Chen X Y, Wan J X, Qian Y T. A simple hydrothermal route to large-scale synthesis of uniform silver nanowires. Chem-Eur J, 2005, 11: 160–163

    Article  Google Scholar 

  10. Wiley B, Sun Y G, Mayers B, Xia Y N. Shape-controlled synthesis of metal nanostructures: The case of silver. Chem-Eur J, 2005, 11: 454–463

    Article  CAS  Google Scholar 

  11. Wang W, Huang J, Ren Z. Synthesis of germanium nanocubes by a low-temperature inverse micelle solvothermal technique. Langmuir, 2005, 21: 751–754

    Article  CAS  Google Scholar 

  12. Feng J, Zeng H C. Size-controlled growth of Co3O4 nanocubes. Chem Mater, 2003, 15: 2,829–2,835

    CAS  Google Scholar 

  13. Sau T K, Murphy C J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J Am Chem Soc, 2004, 126: 8,648–8,649

    Article  CAS  Google Scholar 

  14. Xu R, Zeng H C. Mechanistic investigation on salt-mediated formation of free-standing Co3O4 nanocubes at 95°C. J Phys Chem B, 2003, 107: 926–930

    Article  CAS  Google Scholar 

  15. Xiong Y, Wiley B, Chen J, Li Z Y, Yin Y, Xia Y N. Corrosion-based synthesis of single-crystal Pd nanoboxes and nanocages and their surface plasmon properties. Angew Chem Int Edit, 2005, 44: 7,913–7,917

    CAS  Google Scholar 

  16. Sun X, Li Y. Ga2O3 and GaN semiconductor hollow spheres. Angew Chem Int Edit, 2004, 43: 3,827–3,831

    CAS  Google Scholar 

  17. Kong X Y, Ding Y, Wang Z L. Metal-semiconductor Zn-ZnO core-shell nanobelts and nanotubes. J Phys Chem B, 2004, 108: 570–574

    Article  CAS  Google Scholar 

  18. Zheng X, Zhu L, Yan A, Wang X, Xie Y. Controlling synthesis of silver nanowires and dendrites in mixed surfactant solutions. J Colloid Interf Sci, 2003, 268: 357–361

    Article  CAS  Google Scholar 

  19. Ma Y, Qi L, Shen W, Ma J. Selective synthesis of single-crystalline selenium nanobelts and nanowires in micellar solutions of nonionic surfactants. Langmuir, 2005, 21: 6,161–6,164

    CAS  Google Scholar 

  20. Wang X, Li Y. Selected-control hydrothermal synthesis of α-and β-MnO2 single crystal nanowires. J Am Chem Soc, 2002, 124: 2,880–2,881

    CAS  Google Scholar 

  21. Ni C, Hassan P A, Kaler E W. Structural characteristics and growth of pentagonal silver nanorods prepared by a surfactant method. Langmuir, 2005, 21: 3,334–3,337

    Article  CAS  Google Scholar 

  22. Favie F, Walter E C, Zach M P, Benter T, Penner R M. Hydrogen sensors and switches from electroeposited palladium mesowire arrays. Science, 2001, 293: 2,227–2,231

    Google Scholar 

  23. Cui Y, Wei Q Q, Park H K, Lieber C M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science, 2001, 293: 1,289–1,292

    Article  CAS  Google Scholar 

  24. Gudiksen M S, Lauhon L J, Wang J, Smith D C, Lieber C M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature, 2002, 415: 617–620

    Article  CAS  Google Scholar 

  25. Hu J T, Odom T W, Lieber C M. Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes. Accounts Chem Res, 1999, 32, 435–445

    Article  CAS  Google Scholar 

  26. Sun L, Searson P C, Chien C L. Magnetic anisotropy in prismatic nickel nanowires. Appl Phys Lett, 2001, 79: 4,429–4,431

    CAS  Google Scholar 

  27. Peng X G. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv Mater, 2003, 15: 459–463

    Article  CAS  Google Scholar 

  28. Zong R L, Zhou J, Li Q, Du B, Li B, Fu M, Qi X W, Li L T, Buddhudu S. Synthesis and optical properties of silver nanowire arrays embedded in anodic alumina membrane. J Phys Chem B, 2004, 108: 16,713–16,716

    Article  CAS  Google Scholar 

  29. Choi J, Sauer G, Nielsch K, Wehrspohn R B, Gosele U. Hexagonally arranged monodisperse silver nanowires with adjustable diameter and high aspect ratio. Chem Mater, 2003, 15: 776–779

    Article  CAS  Google Scholar 

  30. Wu Y, Livneh T, Zhang Y X, Cheng G, Wang J, Tang J, Moskovits M, Stucky G D. Templated synthesis of highly ordered mesostructured nanowires and nanowire arrays. Nano Lett, 2004, 4: 2,337–2,342

    CAS  Google Scholar 

  31. Day T M, Unwin P R, Wilson N R, Macpherson J V. Electrochemical templating of metal nanoparticles and nanowires on single-walled carbon nanotube networks. J Am Chem Soc, 2005, 127: 10,639–10,647

    Article  CAS  Google Scholar 

  32. Braun E, Eichen Y, Sivan U, Ben-Yoseph G. DNA-templated assembly and electrode attachment of a conducting silver wire. Nature, 1998, 391: 775–778

    Article  CAS  Google Scholar 

  33. Zhang D, Qi L, Ma J, Cheng H. Formation of silver nanowires in aqueous solutions of a double-hydrophilic block copolymer. Chem Mater, 2001, 13: 2,753–2,755

    CAS  Google Scholar 

  34. Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem Commun, 2001, 617–618

  35. Zhou Y, Yu S H, Wang C Y, Li X G, Zhu Y R, Chen Z Y. A novel ultraviolet irradiation photoreduction technique for the preparation of single-crystal Ag nanorods and Ag dendrites. Adv Mater, 1999, 11: 850–852

    Article  CAS  Google Scholar 

  36. Wang C, Chen M, Zhu G, Lin Z. A novel soft-template technique to synthesize metal Ag nanowire. J Colloid Interf Sci, 2001, 243: 362–364

    Article  CAS  Google Scholar 

  37. Zhou Y, Yu S H, Cui X P, Wang C Y, Chen Z Y. Formation of silver nanowires by a novel solid-liquid phase are discharge method. Chem Mater, 1999, 11: 545–546

    Article  Google Scholar 

  38. Zhu J J, Liu S W, Palchik O, Koltypin Y, Gedanken A. Shape-controlled synthesis of silver nanoparticles by pulse sonoelectrochemical methods. Langmuir, 2000, 16: 6,396–6,399

    CAS  Google Scholar 

  39. Xu J, Hu J, Peng C, Liu H, Hu Y. A simple approach to the synthesis of silver nanowires by hydrothermal process in the presence of gemini surfactant. J Colloid Interf Sci, 2006, 298: 689–693

    Article  CAS  Google Scholar 

  40. Chen Q B, Wei Y H, Shi Y H, Liu H L, Hu Y. Measurement of surface tension and electrical conductivity of cationic gemini surfactants. Journal of East China University of Science and Technology, 2003, 29: 33–37 (in Chinese)

    Google Scholar 

  41. Gao Y, Jiang P, Liu D F, Yuan H J, Yan X Q, Zhou Z P, Wang J X, Song L, Liu L F, Zhou W Y, Wang G, Wang C Y, Xie S S. Evidence for the monolayer assembly of poly(vinylpyrrolidone) on the surfaces of silver nanowires. J Phys Chem B, 2004, 108: 12,877–12,881

    CAS  Google Scholar 

  42. Sun Y G, Mayers B, Herricks T, Xia Y N. Polyol synthesis of uniform silver nanowires: A plausible growth mechanism and the supporting evidence. Nano Lett, 2003, 3: 955–960

    Article  CAS  Google Scholar 

  43. Sun Y G, Yin Y D, Mayers B T, Herricks T, Xia Y N. Uniform silver nanowires synthesis by reducing AgNO3 with ethylene glycol in the presence of seeds and poly(vinylpyrrolidone). Chem Mater, 2002, 14: 4,736–4,745

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Honglai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, J., Liu, W., Liu, H. et al. Controlled synthesis of uniform silver nanowires with high aspect ratios in aqueous solutions of gemini surfactant. Front. Chem. Eng. China 1, 221–227 (2007). https://doi.org/10.1007/s11705-007-0040-6

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-007-0040-6

Keywords

Navigation