Skip to main content
Log in

Synthesis of TiO2 nano-particles and their photocatalytic activity for formaldehyde and methyl orange degradation

  • Research Article
  • Published:
Frontiers of Chemical Engineering in China Aims and scope Submit manuscript

Abstract

TiO2 nano-particles were synthesized by sol-gel technique and characterized by X-ray diffractometer (XRD) and transmission electron microscope (TEM). Their photocatalytic activities for formaldehyde (FA) and methyl orange (MO) degradation were tested using degradation rate (η) as an evaluation index. Based on the orthogonal test results, the optimal condition for TiO2 preparation was obtained. Results showed that particle sizes were in the range of 10–40 nm, and that prepared TiO2 had better photocatalytic activity than P25. A simplified model was developed to evaluate the apparent quantum efficiency (Φ app) of this photocatalytic reaction system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Diebold U. The surface science of titanium dioxide. Surf Sci Rep, 2003, 48(1): 53–229

    Article  CAS  Google Scholar 

  2. Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis. J Photochem Photobio C: Photochem Rev, 2000, 1(1): 1–21

    Article  CAS  Google Scholar 

  3. Carp O, Huisman C L, Reller A. Photoinduced reactivity of titanium dioxide. Prog Solid State Chem, 2004, 32(1–2): 33–177

    Article  CAS  Google Scholar 

  4. Xie Y, Shen X, Yuan C. A novel multi-tube photoreactor with UV light and immobilized TiO2 thin film for water treatment. Chinese J Chem Eng, 2003, 11(1): 27–32

    CAS  Google Scholar 

  5. Hong S S, Lee M, Lee G D, Lim K T, Ha B J. Synthesis of titanium dioxides in water-in-carbon dioxide microemulsion and their photocatalytic activity. Mater Lett, 2003, 57(19): 2975–2979

    CAS  Google Scholar 

  6. Kolen’koYu V, Garshev A V, Churagulov B R, Boujday S, Portes P, Colbeau-Justin C. Photocatalytic activity of sol-gel derived titania converted into nanocrystalline powders by supercritical drying. J Photochem Photobio A: Chem, 2005, 172(1):19–26

    Article  Google Scholar 

  7. Tanaka Y, Suganuma M. Effects of heat treatment on photocatalytic property of sol-gel derived polycrystalline TiO2. J Sol-Gel Sci Technol, 2001, 22(1–2): 83–89

    Article  CAS  Google Scholar 

  8. Shi Z, Fan Y, Xu N, Shi J. Kinetics of photocatalytic degradation of methylene blue over TiO2 particles in aqueous suspensions. Chinese J Chem Eng, 2000, 8(1): 15–19

    CAS  Google Scholar 

  9. Bahnemann D W, Kholuiskaya S N, Dillert R, Kulak A I, Kokorin A I. Photodestruction of dichloroacetic acid catalyzed by nano-sized TiO2 particles. Appl Catal B: Environ, 2002, 36(2):161–169

    Article  CAS  Google Scholar 

  10. Bhatkhande D S, Pangarkar V G, Beenackers A A C M. Photocatalytic degradation of nitrobenzene using titanium dioxide and concentrated solar radiation: Chemical effects and scaleup. Water Research, 2003, 37(3): 1223–1230

    Article  PubMed  CAS  Google Scholar 

  11. Dunlop P S M, Byrne J A, Manga N, Eggins B R. The photocatalytic removal of bacterial pollutants from drinking water. J Photochem Photobio A: Chem, 2002, 148(3): 355–363

    Article  CAS  Google Scholar 

  12. Liu Z, Hong L, Guo B. Physicochemical and electrochemical characterization of anatase titanium dioxide nanoparticles. J Power Sources, 2005, 143(1–2): 231–235

    Article  CAS  Google Scholar 

  13. Uekawa N, Kajiwara J, Kakegawa K, Sugimoto Y S. Low temperature synthesis and characterization of porous anatase TiO2 nanoparticles. J Colloid Interf Sci, 2002, 250(2): 285–290

    Article  CAS  Google Scholar 

  14. Yin S, Li R, He Q, Sato T. Low temperature synthesis of nanosize rutile titania crystal in liquid media. Mater Chem Phys, 2002, 75(1–3): 76–80

    Article  CAS  Google Scholar 

  15. Liao D, Xiao X, Chen H. Influence of preparation conditions of TiO2 film on performance of photocatalytic degradation of formaldehyde. Fine Chemicals, 2003, 20(3): 134–136

    CAS  Google Scholar 

  16. Yu J C, Yu J, Zhao J. Enhanced photocatalytic activity of mesoporous and ordinary TiO2 thin films by sulfuric acid treatment. Appl Catal B: Environ, 2002, 36(2): 31–34

    Article  CAS  Google Scholar 

  17. Peill N J, Hoffmann M R. Mathematical model of a photocatalytic fiber-optic cable reactor for heterogeneous photocatalysis. Environ Sci Technol, 1998, 32: 398–404

    Article  CAS  Google Scholar 

  18. Wyness P, Klausner J F, Goswami D Y. Performance of nonconcentrating solar photocatalytic oxidation reactors. J Solar Energy Eng, 1994, 116: 3–13

    Google Scholar 

  19. Gao R, Stark J, Bahnemann D W, Rabani J. Quantum yields of hydroxyl radicals in illuminated TiO2 nanocrystallite layers. J Photochem Photobio A: Chem, 2002, 148(5): 387–391

    Article  CAS  Google Scholar 

  20. Brandi R J, Citroni M A, Alfano O M, Cassano A E. Absolute quantum yields in photocatalytic slurry reactors. Chem Eng Sci, 2003, 58(2–3): 979–985

    Article  CAS  Google Scholar 

  21. Chiovetta M G, Romero R L, Cassano A E. Modeling of a fluidized-bed photocatalytic reactor for water pollution abatement. Chem Eng Sci, 2001, 56(2): 1631–1638

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao Xinyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiao, X., Liao, D., Zhang, H. et al. Synthesis of TiO2 nano-particles and their photocatalytic activity for formaldehyde and methyl orange degradation. Front. Chem. Eng. China 1, 178–183 (2007). https://doi.org/10.1007/s11705-007-0033-5

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-007-0033-5

Keywords

Navigation