Skip to main content
Log in

Analysis of statistical thermodynamic model for binary protein adsorption equilibria on cation exchange adsorbent

  • Research Article
  • Published:
Frontiers of Chemical Engineering in China Aims and scope Submit manuscript

Abstract

A study of nonlinear competitive adsorption equilibria of proteins is of fundamental importance in understanding the behavior of preparative chromatographic separation. This work describes the nonlinear binary protein adsorption equilibria on ion exchangers by the statistical thermodynamic (ST) model. The single-component and binary protein adsorption isotherms of bovine hemoglobin (Hb) and bovine serum albumin (BSA) on SP Sepharose FF were determined by batch adsorption experiments in 0.05 mol/L sodium acetate buffer at three pH values (4.5, 5.0 and 5.5) and three NaCl concentrations (0.05, 0.10 and 0.15 mol/L) at pH 5.0. The ST model was found to depict the effects of pH and ionic strength on the single-component equilibria well, with model parameters depending on the pH and ionic strength. Moreover, the ST model gave acceptable fitting to the binary adsorption data with the fitted single-component model parameters, leading to the estimation of the binary ST model parameter. The effects of pH and ionic strength on the model parameters are reasonably interpreted by the electrostatic and thermodynamic theories. Results demonstrate the availability of the ST model for describing nonlinear competitive protein adsorption equilibria in the presence of two proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bellot J C, Condoret J S. Modelling of liquid chromatography equilibria. Process Biochem 1993, 28: 365–376

    Article  CAS  Google Scholar 

  2. Bosma J C, Wesselingh J A. pH dependence of ion-exchange equilibrium of proteins. AIChE J, 1998, 44: 2399–2409

    Article  CAS  Google Scholar 

  3. Lewus R K, Carta G. Binary protein adsorption on gel-composite ion-exchange media. AIChE J, 1999, 45: 512–522

    Article  CAS  Google Scholar 

  4. Lan Q, Bassi A S, Zhu J X, Margaritis A. A modified Langmuir model for the prediction of the effects of ionic strength on the equilibrium characteristics of protein adsorption onto ion exchange/ affinity adsorbents. Chem Eng J, 2001, 81: 179–186

    Article  CAS  Google Scholar 

  5. Felinger A, Guiochon G. Multicomponent interferences in overloaded gradient elution chromatography. J Chromatogr A, 1996, 724: 27–37

    Article  CAS  Google Scholar 

  6. Shi Q H, Zhou Y, Sun Y. Influence of pH and ionic strength on the steric mass-action model parameters around the isoelectric point of protein. Biotechnol Prog, 2005, 21: 516–523

    Article  PubMed  CAS  Google Scholar 

  7. Kopaciewicz W, Rounds M A, Fausnaugh J, Renier F E. Retention model for high-performance ion-exchange chromatography. J Chromatogr, 1983, 266: 3–21

    Article  CAS  Google Scholar 

  8. Brooks C A, Cramer S M. Steric mass-action ion exchange: Displacement profiles and induced salt gradients. AIChE J, 1992, 38: 1969–1978

    Article  CAS  Google Scholar 

  9. Tugcu N, Cramer S M. The effect of multi-component adsorption on selectivity in ion exchange displacement systems. J Chromatogr A, 2005, 1063: 15–23

    Article  PubMed  CAS  Google Scholar 

  10. Zhang S P, Sun Y. Steric mass-action model for dye-ligand affinity adsorption of protein. J Chromatogr A, 2002, 957: 89–97

    Article  PubMed  CAS  Google Scholar 

  11. Shen H, Frey D D. Effects of charge regulation on steric mass-action equilibrium for the ion-exchange adsorption of proteins. J Chromatogr A, 2005, 1079: 92–104

    Article  PubMed  CAS  Google Scholar 

  12. Ståhlberg J, Jönsson B, Horváth C. Theory for electrostatic interaction chromatography of proteins. Anal Chem, 1991, 63:1867–1874

    Article  PubMed  Google Scholar 

  13. Norde W, Lyklema J. The adsorption of human plasma albumin and bovine pancreas ribonuclease at negatively charged polystyrene surfaces IV. The charge distribution in the adsorbed state. J Colloid Interface Sci, 1978, 66: 285–294

    Article  CAS  Google Scholar 

  14. Norde W, Lyklema J. Thermodynamics of protein adsorption theory with special reference to the adsorption of human plasma albumin and bovine pancreas ribonuclease at polystyrene surfaces. J Colloid Interface Sci, 1979, 71: 350–366

    Article  CAS  Google Scholar 

  15. Roth C M, Lenhoff A M. Electrostatic and van der Waals contributions to protein adsorption: Computation of equilibrium constants. Langmuir, 1993, 9: 962–972

    Article  CAS  Google Scholar 

  16. Ståhlberg J, Jönsson B. Influence of charge regulation in electrostatic interaction chromatography of proteins. Anal Chem, 1996, 68: 1536–1544

    Article  Google Scholar 

  17. Bosma J C, Wesselingh J A. Available area isotherm. AIChE J, 2004, 50: 848–853

    Article  CAS  Google Scholar 

  18. Li W, Zhang S P, Sun Y. Modeling of the linear-gradient dyeligand affinity chromatography with a binary adsorption isotherm. Biochem Eng J, 2004, 22: 63–70

    Article  CAS  Google Scholar 

  19. Skidmore G L, Chase H A. Two-component protein adsorption to the cation exchanger S Sepharose FF. J Chromatogr, 1990, 505:329–347

    Article  PubMed  CAS  Google Scholar 

  20. Zhang S P, Sun Y. A predictive model for salt effects on the dye-ligand affinity adsorption equilibrium of protein. Ind Eng Chem Res, 2003, 42: 1235–1242

    Article  CAS  Google Scholar 

  21. Su X L, Sun Y. Thermodynamic model for nonlinear electrostatic adsorption equilibrium of protein. AIChE J, 2006, 52: 2921–2930

    Article  CAS  Google Scholar 

  22. Dephillips P, Lenhoff A M. Pore size distributions of cationexchange adsorbents determined by inverse size-exclusion chromatography. J Chromatogr A, 2000, 883: 39–54

    Article  PubMed  CAS  Google Scholar 

  23. Boyer P M, Hsu J T. Experimental studies of restricted protein diffusion in an agarose matrix. AIChE J, 1992, 38: 259–272

    Article  CAS  Google Scholar 

  24. Tyn M T, Gusek T W. Prediction of diffusion coefficients of proteins. Biotechnol Bioeng, 1990, 35: 327–338

    Article  CAS  Google Scholar 

  25. Yoon J Y, Lee J H, Kim J H, Kim W S. Separation of serum proteins with uncoupled microsphere particles in a stirred cell. Colloids Surf B, 1998, 10: 365–377

    Article  CAS  Google Scholar 

  26. Lehninger A L. Principles of Biochemistry. New York: Worth Publishers, 1982, 128

    Google Scholar 

  27. Hunter A K, Carta G. Protein adsorption on novel acrylamido-based polymeric ion-exchangers (III): Salt concentration effects and elution behavior. J Chromatogr A, 2001, 930: 79–93

    Article  PubMed  CAS  Google Scholar 

  28. Lin F Y, Chen C S, Chen W Y, Yamamato S. Microcalorimetric studies of the interaction mechanisms between proteins and Q-Sepharose at pH near the isoelectric point (pI) effects of NaCl concentration, pH value, and temperature. J Chromatogr A, 2001, 912: 281–289

    Article  PubMed  CAS  Google Scholar 

  29. Scopes R K. Strategies for enzyme isolation using dye-ligand and related adsorbents. J Chromatogr, 1986, 376: 131–140

    Article  PubMed  CAS  Google Scholar 

  30. Scatchard G, Scheinberg I H, Armstrong S H J. Physical chemistry of protein solution IV. The combination of human serum albumin with chloride ion. J Am Chem Soc, 1950, 72: 535–540

    Article  CAS  Google Scholar 

  31. Tanford C, Swanson S A, Shore W S. Hydrogen ion equilibria of bovine serum albumin. J Am Chem Soc, 1955, 77: 6414–6421

    Article  CAS  Google Scholar 

  32. Dephillips P, Lenhoff A M. Determinants of protein retention characteristics on cation-exchange adsorbents. J Chromatogr A, 2001, 933: 57–72

    Article  PubMed  CAS  Google Scholar 

  33. Haggerty L, Lenhoff A M. Relation of protein electrostatics computations to ion-exchange and electrophoretic behavior. J Phys Chem, 1991, 95: 1472–1477

    Article  CAS  Google Scholar 

  34. Oberholzer M R, Stankovich J M, Carnie S L, Chan D Y C, Lenhoff A M. 2-D and 3-D interactions in random sequential adsorption of charged particles. J Colloid Interface Sci, 1997, 194:138–153

    Article  PubMed  CAS  Google Scholar 

  35. Kuehner D E, Blanch H W, Prausnitz J M. Salt-induced protein precipitation: Phase equilibria from an equation of state. Fluid Phase Equilib, 1996, 116: 140–147

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun Yan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X., Su, X. & Sun, Y. Analysis of statistical thermodynamic model for binary protein adsorption equilibria on cation exchange adsorbent. Front. Chem. Eng. China 1, 103–112 (2007). https://doi.org/10.1007/s11705-007-0020-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-007-0020-x

Keywords

Navigation